1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kitty [74]
3 years ago
12

A square has sides of length x. If the sides are all tripled in length, the area of the square is multiplied by

Mathematics
1 answer:
lyudmila [28]3 years ago
8 0

Answer:

3

Step-by-step explanation:

you would multiply by 3

You might be interested in
What’s the correct answer
SVETLANKA909090 [29]

Answer: C. 1998, 2000, 2002

7 0
3 years ago
Read 2 more answers
If anyone knows about definite integrals for calculus then please I request help! I
kicyunya [14]

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

4 0
2 years ago
What is the value of x?
BlackZzzverrR [31]
We can use the Pythagorean theorum

a^2+b^2=c^2

c^2 is the length of the longest side squared

so 

6^2 + b^2 = 10^2

36+ b^2 = 100
-36               -36

b^2 = 64

b = 8

b is the same thing as your "x", so x = 8
7 0
3 years ago
Read 2 more answers
I need help ahhh someone please
Xelga [282]
Translate down and reflect over a vertical line! :)

it means bring the cup down and then flip
8 0
3 years ago
Linda collects a random sample of 12 of the 98 Wilderness Club members’ ages. She makes an inference that most wilderness club m
mash [69]
The box plot that would confirm the inference that Linda made would have a minimum value of 20 and a maximum value of 40. Somewhere in the between is the mean. The box plot should have a confidence interval of 95% in order to have the inference valid.<span />
7 0
2 years ago
Other questions:
  • if 60 people were asked their favorite color how many people preferred blue when 26% were red ,16%green,30%blue,4%black and 24%y
    12·1 answer
  • 2. Pat is six years older than twice his Cousin Zach’s age. The sum of their ages is less than 36.
    14·2 answers
  • Simplify:<br><br> 2(4p – 3) + (p + 7)<br> A. 5p + 1<br> B. 5p + 4 <br> C. 9p + 1<br> D. 9p + 13
    8·1 answer
  • The expression of 536 × 34​
    11·1 answer
  • Hey can anyone pls pls pls help me in dis I WILL MARK U AS BRAINLIEST!!!!!
    6·1 answer
  • F(x) = 600x +1200 where x is number of cars sold give the domain and range
    14·1 answer
  • You have been asked to design a rectangular box with a square base and an open top. The volume of the box must be 1536cm3. Deter
    13·1 answer
  • At 1:00 the water level in a pool is 13 inches at 2:30 in the water level is 28 inches what is the rate of change
    14·1 answer
  • The point-slope form of the equation of the line that passes through (-4, -3) and (12, 1) is y– 1 =1/4 (x – 12). What is the sta
    6·1 answer
  • Write the mixed number as an improper fraction<br> 13/5
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!