A glow stick will glow longer at lower temperatures than at room temperature, one can infer from the observation. Temperature and reaction time are the test variables.
We notice in this reaction that a glow stick stored in the freezer lights for a longer period of time than a glow stick stored at normal temperature. This implies that temperature affects how long a response lasts.
The most straightforward explanation for this observation is that glow sticks glow longer in colder temperatures than they do at room temperature; as a result, glow sticks kept in the freezer are observed to glow longer than glow sticks kept at room temperature.
To learn more about chemicals to the given link:
brainly.com/question/24600141
#SPJ4
Answer:
D. Its temperature will remain 100 C until all the vapours condenses
Explanation:
Heat absorbed by a substance to change the state of matter is known as latent heat. This heat is utilized to break the bonds between atoms of the substance so that they can undergo phase change.
So, when water boils at 100 degree Celsius then temperature will remain constant unless and until all the water changes into vapor. As it is the latent heat that breaks the bonds between hydrogen and oxygen atoms of water so that liquid state can change into gaseous state.
Since latent heat is a hidden heat, that is why, it does not get reflected and there is no change in temperature due to it.
Thus, we can conclude that it is true that temperature will remain at 100°C until all the vapor condenses for a sample of water vapor at 101°C as it cools.
Answer: a . 152g/mol b. 102g/mol c. 183g/mol
Explanation:
By stating the atomic masses of each element in the questions, we have;
Fe= 56, S= 32, O= 16, Al = 27, C = 12, H =1 , N = 14, therefore
(a). FeSO4 = 56 + 32 + (16 x 4) = 152g/mol
(b). Al2O3 = (27 x 2) + (16 x 3) = 102g/mol
(c). C7H5NO3S ( Saccharin, an artificial Sweetner) =
(12 x 7) + (1 x 5) + 14 + (16 x 3) + 32 = 183g/mol
The amount of heat required to melt the iceberg at 9.58 * 10¹⁸ kJ.
<h3>What is the amount of heat required to melt an iceberg that has a volume of about 3.1 x 1013 m³?</h3>
The heat required to melt a unit mass of ice is known as the latent heat of fusion.
The latent heat of fusion of ice of 1 kg= 334 kJ of heat
Mass of iceberg = 3.1 x 10¹³ m³ * 917 kg = 2.8427 * 10¹⁶ kg
Amount of heat required = 2.8427 * 10¹⁶ * 334 = 9.58 * 10¹⁸ kJ.
Therefore, the amount of heat required to melt the iceberg at 9.58 * 10¹⁸ kJ.
Learn more about latent heat of fusion at: brainly.com/question/87248
#SPJ1