<u>Answer:</u> The energy released for the decay of 3 grams of 230-Thorium is 
<u>Explanation:</u>
First we have to calculate the mass defect
.
The equation for the alpha decay of thorium nucleus follows:

To calculate the mass defect, we use the equation:
Mass defect = Sum of mass of product - Sum of mass of reactant


(Conversion factor:
)
To calculate the energy released, we use Einstein equation, which is:



The energy released for 230 grams of decay of thorium is 
We need to calculate the energy released for the decay of 3 grams of thorium. By applying unitary method, we get:
As, 230 grams of Th release energy of = 
Then, 3 grams of Th will release energy of = 
Hence, the energy released for the decay of 3 grams of 230-Thorium is 
Answer:
Explanation:
Let the number of moles of oxygen = x
2H2 + O2 --> 2 H2O
x 13.3
Since the balance number for oxygen is 1 and the balance number for water is 2, you must set up a proportion. (Those balance numbers represent the number of moles).
1/x = 2 / 13.3 Cross Multiply
2*x = 13.3 Divide both sides by 2
2x/2 = 13.3/2
x = 6.65
You need 6.65 moles of oxygen.
Answer:
The answer will be Ligand A with a dissociation constant (Kd) of
M
Explanation:
When the dissociation constant in the ligand is small (in order of nano) (
) it will be more tied. Due to a dissociation constant measures how much a ligand can be able to be separated from the protein so if the number is small it means that the ligand is highly binded to the protein.
On the other hand, the occupancy percentage of the ligand does not imply binding. Conversely, a High-affinity ligand binding with the proteins implies that a relatively low concentration of a ligand is adequate to occupy the maximum ligand-binding site.
Your Question: {How many objects are in a mole?}
Helpful Knowledge: (We Know the amount in an object: 12g or C^12)
{A number of objects that are in a mole of objects?}
Well for the question it is pretty easy to answer because a number of objects in One mole would equal 6.02 × 10²³
Which 6.02 × 10²³ is an Avogadro's Number.
So it depends on how many objects you have.
So for every object you have, One mole would equal 6.02 × 10²³. Or 62,000,000,000,000,0000,000,000. Big Number am I right. So that's why we just use 6.02 × 10²³.
Anywho, your answer would be 6.02 x 10²³ x n.
N would equal the number of objects you're calculating.
Final Answer: 6.02 x 10²³ x (n) = (Your Answer)
Hope this helps! Have a great day. If you need anything else, feel free to hope right in my inbox. Or comment below. ↓
Types of Bonds can be predicted by calculating the
difference in electronegativity.
If, Electronegativity difference is,
Less
than 0.4 then it is Non Polar Pure Covalent
Between 0.4 and 1.7 then it is Polar Covalent
Greater than 1.7 then it is Ionic
For Br and Br,
E.N of Bromine = 2.96
E.N of Bromine = 2.96
________
E.N Difference
0.00 (Non Polar/Pure Covalent)
For N and O,
E.N of Oxygen = 3.44
E.N of Nitrogen = 3.04
________
E.N Difference
0.40 (Non Polar/Pure Covalent)
For P and H,
E.N of Hydrogen = 2.20
E.N of Phosphorous = 2.19
________
E.N Difference 0.01 (Non Polar/Pure Covalent)
For K and O,
E.N of Oxygen = 3.44
E.N of Potassium = 0.82
________
E.N Difference 2.62 (Ionic)