1, 6, 2, 6
In the order you wrote them in
Answer:
The final volume is 3.07L
Explanation:
The general gas law will be used:
P1V1 /T1 = P2V2 /T2
V2 =P1 V1 T2 / P2 T1
Give the variables to the standard unit:
P1 = 345 torr = 345 /760 atm = 0.4539atm
T1 = -15°C = -15 + 273 = 258K
V1 = 3.48L
T2 = 36°C = 36+ 273 = 309K
P2 = 468 torr = 468 * 1/ 760 atm = 0.6158atm
V2 = ?
Equate the values into the gas equation, you have:
V2 = 0.4539 * 3.48 * 309 / 0.6158 * 258
V2 = 488.0877 /158.8764
V2 = 3.07
The final volume is 3.07L
Answer:

Explanation:
Hello there!
In this case, given the T-V variation, we understand it is possible to apply the Charles' law as shown below:

Thus, since we are interested in the initial temperature, we can solve for T1, plug in the volumes and use T2 in kelvins:

Best regards!
Taking into account the reaction stoichiometry, 102 grams of Al₂O₃ are formed when 48 grams of O₂ react.
<h3>Reaction stoichiometry</h3>
In first place, the balanced reaction is:
4 Al + 3 O₂ → 2 Al₂O₃
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:
- Al: 4 moles
- O₂: 3 moles
- Al₂O₃: 2 moles
The molar mass of the compounds is:
- Al: 27 g/mole
- O₂: 32 g/mole
- Al₂O₃: 102 g/mole
Then, by reaction stoichiometry, the following mass quantities of each compound participate in the reaction:
- Al: 4 moles ×27 g/mole= 108 grams
- O₂: 3 moles ×32 g/mole= 96 grams
- Al₂O₃: 2 moles ×102 g/mole= 204 grams
<h3>Mass of Al₂O₃ formed</h3>
The following rule of three can be applied: if by reaction stoichiometry 96 grams of O₂ form 204 grams of Al₂O₃, 48 grams of O₂ form how much mass of Al₂O₃?

<u><em>mass of Al₂O₃= 102 grams</em></u>
Finally, 102 grams of Al₂O₃ are formed when 48 grams of O₂ react.
Learn more about the reaction stoichiometry:
brainly.com/question/24741074
brainly.com/question/24653699
#SPJ1