A. Using the third equation of motion:
v2 = u2 + 2as
from the question;
the jet was initially at rest
hence u = 0
a = 1.75m/s2
s = 1500m
v2 = 02 + 2(1.75)(1500)
v2 = 5250
v = √5250
v = 72.46m/s
hence it moves with a velocity of 72.46m/s.
b. s = ut + 1/2at2
1500 = 0(t) + 1/2(1.75)t2
1500 × 2 = 2× 1/2(1.75)t2
3000 = 1.75t2
1714.29 = t2
41.4 = t
hence the time taken for the plane to down the runway is 41.4s.
Read more on Brainly.com -
brainly.com/question/18743384#readmore
100000 Pascal
Explanation:
pressure= force/area
Max pressure= force/min area
so f=5
min area= 5×10^-5
5÷5*10^-5 = 100000pascal
Answer:
Since velocity is a speed and a direction, there are only two ways for you to accelerate
Explanation:
change your speed or change your direction—or change both.
Explanation:
Position-time graphs measure/express the position of a skater over time relative to the start or finish of the race (depends on how it is used). Note: are the skaters in line vertically or horizontally? Like is one directly behind the other or are they next to each other?
If the two skaters are in line horizontally with each other, then their position will be the same relative to the start or finish of the race. This means if one passes the other one, the position would be different for all times after they pass. On the graph, it would look like one single line at the start (as position is same) which splits into 2 (representing the new difference in position due to 1 passing the other.
If the two skaters are in line vertically, their lines on the graph will appear parallel to each other (assuming they are going same speed) because the position is changing at the same rate, one is just reaching the same point after the other. If the skater behind overtakes the one in front. The lines on the graph will cross and continue either in parallel but with the other line on top to represent the moment where their position is the same right before they pass and after, where the second skater is now in front.
Hope this helped!
Answer:
c. Kinetic energy
Explanation:
The two types of energy involved in this problem are:
- Potential energy: it is the energy possessed by an object due to its position. It is calculated as

where
m is the mass of the object
g is the acceleration due to gravity
h is the height of the object relative to the ground
From the formula, we see that the higher the object is above the ground (higher h), the larger the potential energy of the object. In this problem, the pig is falling down, so the value of h is decreasing, therefore the potential energy is decreasing as well.
- Kinetic energy: it is the energy possessed by an object due to its motion. It is given by:

where
m is the mass of the object
v is its speed
In this problem, as the pig falls down, it accelerates, so its speed increases: since the kinetic energy is proportional to the square of the speed, as the speed increases, its kinetic energy increases too. So, the correct answer is
c. Kinetic energy