Answer:
a moving object will keep moving if not stopped
the sun being at the center of the solar system
Explanation:
Galileo is known for being the first person make a telescope, there fore being the first person to see that the sun is in the center of the solar system. he also came up with the theory that if something is pushed, it would keep moving until stopped by another force. For example, say you drop your pencil, it keeps falling until it hits the ground. That is exactly what Galileo did in his Leaning Tower of Pisa experiment and found that theory to be true.
Look at this table. Accleration of gravity means gravitational constant.

λ - wavelength, c - the speed of light, f - frequency
![f=200 \ kHz= 200 000 \ Hz \\ \\ \lambda=\frac{300 000 \ [\frac{km}{s}]}{200 000 \ [Hz]}=\frac{3}{2}=1.5 \ [km]](https://tex.z-dn.net/?f=f%3D200%20%5C%20kHz%3D%20200%20000%20%5C%20Hz%20%5C%5C%20%5C%5C%0A%5Clambda%3D%5Cfrac%7B300%20000%20%5C%20%5B%5Cfrac%7Bkm%7D%7Bs%7D%5D%7D%7B200%20000%20%5C%20%5BHz%5D%7D%3D%5Cfrac%7B3%7D%7B2%7D%3D1.5%20%5C%20%5Bkm%5D)
The wavelength of these waves is 1.5 km.
The Period of the resulting shm will be T=39.7
<u>Explanation:</u>
<u>Given data</u>
m=3kg
d=.06m
k=1200 N/m
Θ=3 °
T=?
we have the formulas,
I = (1/6)Md2
F = ma
F = -kx = -(mω2x)
k = mω2 τ = -d(FgsinΘ)
T=2 x 3.14/ √(m/k)
Solution for the given problem would be,
F=-Kx (where x= dsin Θ)
F=-k dsin Θ
F=-(1200)(.06)sin(3 °)
F=-10.16N
<u>By newton's second law.</u>
F = ma
a= F/m
a=(-10.16N)/3
a=3.38
<u>using the k=mω value</u>
k=mω
ω=k/m
ω=1200/3
ω=400
<u>Using F = -kx value</u>
x = F/-k
x=(-10.16)/1200
x=0.00847m
<u>Restoring the torque value </u>
τ = -dmgsinΘ where( τ = Iα so.).. Iα = -dmgsinΘ α = -(.06)(4)α =
α =(.06)(4)(9.81)sin(4°)
α=-1.781
<u>Rotational to linear form</u>
a = αr
r = .1131 m
a=-1.781 x .1131 m
a=-0.2015233664
<u>Time Period</u>
T=2 x 3.14/ √(m/k)
T=6.28/√(3/1200)
T=6.28/0.158
T=39.7
The average velocity of the lizard for the whole journey is 0.26 m/s Down.
<h3>What is average velocity?</h3>
The term average velocity has to do with the velocity of the lizard for the whole journey. We can see that the downward displacement is greater than the upward displacement.
Thus;
Velocity = displacement / time = 23.7 m - 15.5 m/31.5s = 0.26 m/s Down.
Thus, the average velocity of the lizard for the whole journey is 0.26 m/s Down.
Learn more about velocity:brainly.com/question/13639113
#SPJ1