Answer:
microwaves
Explanation:
microwaves do emit radiation, technically speaking, but it's not the DNA-damaging radiation we're used to hearing about. Microwaves, along with radio waves from (you guessed it) radio and cell phone towers, are types of non-ionizing radiation.
The time taken by the light reflected from sun to reach on earth will be 8.4 minutes.
To find the answer, we need to know about the distance travelled by light.
<h3>How to find the time taken by the light reflected from sun to reach on earth?</h3>
- So, in order to solve this problem, we must first know how far the moon is from Earth and how far the Sun is from the moon.
- These distances are given as 3.8×10^5 km (Earth-Moon) and 1.5×10^8 km (Sun- Earth).
- Since the Moon and Sun are on opposite sides of Earth during a full moon, the light's distance traveled equals,

- As we know that light travels at a speed of 300,000 km per second. then, the time taken by the light reflected from sun to reach on earth will be,

Thus, the time it takes for the light from the Sun to reach Earth and be recognized as 8.4 minutes.
Learn more about distance here:
brainly.com/question/11495758
#SPJ4
You will use the Pythagorean Theorem to solve it.
c^2 = a^2 + b^2
c^2 = (1.5)^2 + (2)^2
c^2 = 6.25
c = square root of 6.25
c = 2.5
I hope this helps!
(1) Doubling of the current through the wire will result in doubling of its magnetic field.
The magnetic field around a wire is a function of the current I and radial distance r

(with mu denoting the magnetic permeability of the medium). So, B is directly proportional to I. The field magnitude will double with the doubled current from 5A to 10A
(2) Using the same formula as in (1), we can see that the magnetic field is inversely proportional to the radial distance from the wire. So, a particle at 20cm will experience half the magnitude compared to a particle at 10cm.
(3) Answer
If a particle with a charge q moves through a magnetic field B with velocity v, it will be acted on by the magnetic force

So, a particle with charge -2uC will experience a magnetic force of same magnitude but opposite direction (and perpendicular to B) as compared to a particle with a charge of 2uC