Answer:
a = 0.8 m/s^2
Explanation:
Force equation: F = ma
F = ma -> a = F/m = 2.8*10^3 N / 3.5*10^3 kg = 0.8 m/s^2
Answer:
A) R = (200 i ^ + 100 j ^ + 30k ^) m
, B) L = 223.61 m
, C) R = 225.61 m
Explanation:
Part A
This is a vector summing exercise, let's take a Reference System where the z axis corresponds to the height (flights), the x axis is the East - West and the y axis corresponds to the North - South.
Let's write the displacements
Descending from the apartment
10 flights of 3 m each, the total descent is 30 m
Z = 30 k ^ m
Offset at street level
L1 = 0.2 i ^ km
L2 = 0.1 j ^ km
Let's reduce everything to the SI system
L1 = 0.2 * 1000 = 200 i ^ m
L2 = 100 j ^ m
The distance traveled is
R = (200 i ^ + 100 j ^ + 30k ^) m
Part B
The horizontal distance traveled can be found with the Pythagorean theorem for the coordinates in the plane
L² = x² + y²
L = √ (200² + 100²)
L = 223.61 m
Part C
The magnitude of travel, let's use the Pythagorean theorem for the sum
R² = x² + y² + z²
R = √ (30² + 200² + 100²)
R = 225.61 m
<span>Radius distance from origin to particle = √ (2²+1²) = √5 m = R
I = MR² = (0.200)(5) = 1.00 kg-m²
Θ = arctan 2/1 = 63.4° = R's angle CCW from horizontal
V = 3.0 m/s
V component that is at 90° to R = 3.0(sin 90°- 63.4°) = 3.0(sin 26.6°) = 1.3433 m/s
w = [V component / R] = 1.3433/√5 = 0.601 rad/s
size of angular momentum of particle relative to origin = Iw = (1.00)(0.601) = 0.601 kgm²/s</span><span>
i hope I'm right</span>
we assume the acceleration is constant. we choose the initial and final points 1.40s apart, bracketing the slowing-down process. then we have a straightforward problem about a particle under constant acceleration. the initial velocity is v xi =632mi/h=632mi/h( 1mi 1609m )( 3600s 1h )=282m/s (a) taking v xf =v xi +a x t with v xf =0 a x = t v xf −v xf = 1.40s 0−282m/s =−202m/s 2 this has a magnitude of approximately 20g (b) similarly x f −x i = 2 1 (v xi +v xf )t= 2 1 (282m/s+0)(1.40s)=198m
Answer:
Light or visible light is electromagnetic radiation within the portion of the electromagnetic spectrum that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nm, or 4.00 × 10⁻⁷ to 7.00 × 10⁻⁷ m, between the infrared and the ultraviolet.
Explanation:
This is one type of light.