Answer:
Carriage outwards is also referred to as freight-out, transportation-out, or delivery expense. The cost of carriage outwards should be reported on the income statement as an operating expense in the same period as the revenue from the sale of the goods.
Down three and over left four so something like (-3, -4) im pretty sure
<h2>
Hello!</h2>
The answers are:
The possible values for x in the equation, are:
First option, ![5\sqrt[3]{3}](https://tex.z-dn.net/?f=5%5Csqrt%5B3%5D%7B3%7D)
Second option, ![\sqrt[3]{375}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B375%7D)
<h2>
Why?</h2>
To solve the problem, we need to remember the following properties of the exponents and roots:
![a\sqrt[n]{b}=\sqrt[n]{a^{n}*b} \\\\\sqrt[n]{a^{m} }=a^{\frac{m}{n}}\\\\(a^{b})^{c}=a^{b*c}](https://tex.z-dn.net/?f=a%5Csqrt%5Bn%5D%7Bb%7D%3D%5Csqrt%5Bn%5D%7Ba%5E%7Bn%7D%2Ab%7D%20%5C%5C%5C%5C%5Csqrt%5Bn%5D%7Ba%5E%7Bm%7D%20%7D%3Da%5E%7B%5Cfrac%7Bm%7D%7Bn%7D%7D%5C%5C%5C%5C%28a%5E%7Bb%7D%29%5E%7Bc%7D%3Da%5E%7Bb%2Ac%7D)
Then, we are given the expression:

So, finding "x", we have:
![x^{3}=375\\\\(x^{3})^{\frac{1}{3} } =(375)^{\frac{1}{3}}\\\\x=\sqrt[3]{375}=\sqrt[3]{125*3}=\sqrt[3]{125}*\sqrt[3]{3}=5\sqrt[3]{3}](https://tex.z-dn.net/?f=x%5E%7B3%7D%3D375%5C%5C%5C%5C%28x%5E%7B3%7D%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%20%7D%20%3D%28375%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%5C%5C%5C%5Cx%3D%5Csqrt%5B3%5D%7B375%7D%3D%5Csqrt%5B3%5D%7B125%2A3%7D%3D%5Csqrt%5B3%5D%7B125%7D%2A%5Csqrt%5B3%5D%7B3%7D%3D5%5Csqrt%5B3%5D%7B3%7D)
Hence, the possible values for x in the equation, are:
First option, ![5\sqrt[3]{3}](https://tex.z-dn.net/?f=5%5Csqrt%5B3%5D%7B3%7D)
Second option, ![\sqrt[3]{375}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B375%7D)
Have a nice day!