1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elodia [21]
3 years ago
15

the area of the flag is 96 feet square feet. what is the perimeter of the flag if it has a length of 12 feet

Mathematics
1 answer:
poizon [28]3 years ago
5 0
A=w*l \\ 96=w*12 \\ w= \frac{96}{12} =8
P=2(w+l)=2(12+8)=2*20=40
You might be interested in
You deposit $20,000 in an account that pays 7.77% annual interest. Find the balance after 2 years when the interest is compounde
Mademuasel [1]

Answer:

The account balance after 24 months will be $23,092.70

Step-by-step explanation:

Given data

P= $20,000

r= 7.77%= 0.077

t= 2 years

A= ?

n= 24

The compound interest formula is

A= P(1+t)^t

Inserting our values to solve for A we have

A= 20000(1+\frac{0.077}{24} )^2^*^2^4\\\\A= 20000(1+0.003 )^2^*^2^4\\\\A= 20000(1.003 )^2^*^2^4\\\A= 20000(1.003 )^4^8\\\A= 20000*1.15463517818\\\A= 23092.7035636\\\A= 23,092.70

5 0
3 years ago
Please help me with this too
satela [25.4K]

Is it just me or is it just that I can't see anything

8 0
3 years ago
Read 2 more answers
a car salesman has 7 used cars for sale. They have a mean price of $8000. What is the total price of all 7 cars?
Pie

Answer:

$155282862040271282939285047182828282828

7 0
3 years ago
Please find the slope, thank you
labwork [276]
(2,1) (3,3) that’s it
8 0
2 years ago
For the following integral, find the approximate value of the integral with 4 subdivisions using midpoint, trapezoid, and Simpso
PIT_PIT [208]

Answer:

\textsf{Midpoint rule}: \quad \dfrac{2\pi}{\sqrt[3]{2}}

\textsf{Trapezium rule}: \quad \pi

\textsf{Simpson's rule}: \quad \dfrac{4 \pi}{3}

Step-by-step explanation:

<u>Midpoint rule</u>

\displaystyle \int_{a}^{b} f(x) \:\:\text{d}x \approx h\left[f(x_{\frac{1}{2}})+f(x_{\frac{3}{2}})+...+f(x_{n-\frac{3}{2}})+f(x_{n-\frac{1}{2}})\right]\\\\ \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Trapezium rule</u>

\displaystyle \int_{a}^{b} y\: \:\text{d}x \approx \dfrac{1}{2}h\left[(y_0+y_n)+2(y_1+y_2+...+y_{n-1})\right] \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Simpson's rule</u>

\displaystyle \int_{a}^{b} y \:\:\text{d}x \approx \dfrac{1}{3}h\left(y_0+4y_1+2y_2+4y_3+2y_4+...+2y_{n-2}+4y_{n-1}+y_n\right)\\\\ \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Given definite integral</u>:

\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x

Therefore:

  • a = 0
  • b = 2π

Calculate the subdivisions:

\implies h=\dfrac{2 \pi - 0}{4}=\dfrac{1}{2}\pi

<u>Midpoint rule</u>

Sub-intervals are:

\left[0, \dfrac{1}{2}\pi \right], \left[\dfrac{1}{2}\pi, \pi \right], \left[\pi , \dfrac{3}{2}\pi \right], \left[\dfrac{3}{2}\pi, 2 \pi \right]

The midpoints of these sub-intervals are:

\dfrac{1}{4} \pi, \dfrac{3}{4} \pi, \dfrac{5}{4} \pi, \dfrac{7}{4} \pi

Therefore:

\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x & \approx \dfrac{1}{2}\pi \left[f \left(\dfrac{1}{4} \pi \right)+f \left(\dfrac{3}{4} \pi \right)+f \left(\dfrac{5}{4} \pi \right)+f \left(\dfrac{7}{4} \pi \right)\right]\\\\& = \dfrac{1}{2}\pi \left[\sqrt[3]{\dfrac{1}{2}} +\sqrt[3]{\dfrac{1}{2}}+\sqrt[3]{\dfrac{1}{2}}+\sqrt[3]{\dfrac{1}{2}}\right]\\\\ & = \dfrac{2\pi}{\sqrt[3]{2}}\\\\& = 4.986967483...\end{aligned}

<u>Trapezium rule</u>

\begin{array}{| c | c | c | c | c | c |}\cline{1-6} &&&&&\\ x & 0 & \dfrac{1}{2}\pi & \pi & \dfrac{3}{2} \pi & 2 \pi \\ &&&&&\\\cline{1-6} &&&&& \\y & 0 & 1 & 0 & 1 & 0\\ &&&&&\\\cline{1-6}\end{array}

\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x &  \approx \dfrac{1}{2} \cdot \dfrac{1}{2} \pi \left[(0+0)+2(1+0+1)\right]\\\\& = \dfrac{1}{4} \pi \left[4\right]\\\\& = \pi\end{aligned}

<u>Simpson's rule</u>

<u />

<u />\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x & \approx \dfrac{1}{3}\cdot \dfrac{1}{2} \pi \left(0+4(1)+2(0)+4(1)+0\right)\\\\& = \dfrac{1}{3}\cdot \dfrac{1}{2} \pi \left(8\right)\\\\& = \dfrac{4}{3} \pi\end{aligned}

6 0
2 years ago
Other questions:
  • 11. The diagram shows the dimensions of Anna’s laundry room floor. 4 feet 2 feet 12 feet 8 feet 6 feet Use either addition or su
    8·1 answer
  • In 2007, the U.S. population was 302 million people. In 2012, it was 314 million. What was the rate of population change per yea
    14·1 answer
  • Persons having Raynaud's syndrome are apt to suffer a sudden impairment of blood circulation in fingers and toes. In an experime
    12·1 answer
  • What is the discriminant of the quadratic equation?
    8·2 answers
  • Evaluate if x = –14.6 and y = 2.5. –x – |y|
    5·1 answer
  • Help me ‼️‼️‼️please and thank uuuuu
    9·1 answer
  • 5x - 7 = -12 please help me with this ill mark brainliest
    7·2 answers
  • Adriana is excited to go to the used video game store to buy a gaming system later today. The gaming system usually costs x doll
    7·1 answer
  • What is the equation of the line that passes through (4,-1) and (-2,3)
    9·1 answer
  • The function h is defined as follows.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!