Well since the bowling ball is at rest and is not moving at all, and assuming that the ball is on an even surface, the Fg is equal to the FN = normal force, and thus all forces are balanced, the Fnet = 0.
Answer:
How do you find out the missing masses in a balloon?
Well, actually you can't find the missing masses in a balloon. Why?
Because the mass of the mass of balloon, it can't see the mass of it, it only see if it the balloon is deflated or inflated.
Explanation:
Hope it helps
#LetsStudy
<span>Without friction, there will be undamped simple harmonic motion. The force of the spring is proportional to the distance from the equilibrium point. The period of oscillation will be independent of the amplitude.
I hope my answer has come to your help. God bless and have a nice day ahead!</span>
Answer:
0.72 kg per cubic m
Explanation:
Mass = 14.4 kg
Volume = lbh = 4*1*5 = 20 cubic m

Explanation:
Given that,
Mass, m = 0.08 kg
Radius of the path, r = 2.7 cm = 0.027 m
The linear acceleration of a yo-yo, a = 5.7 m/s²
We need to find the tension magnitude in the string and the angular acceleration magnitude of the yo‑yo.
(a) Tension :
The net force acting on the string is :
ma=mg-T
T=m(g-a)
Putting all the values,
T = 0.08(9.8-5.7)
= 0.328 N
(b) Angular acceleration,
The relation between the angular and linear acceleration is given by :

(c) Moment of inertia :
The net torque acting on it is,
, I is the moment of inertia
Also, 
So,

Hence, this is the required solution.