Answer:
72.54 degree west of south
Explanation:
flow = 3.9 m/s north
speed = 11 m/s
to find out
point due west from the current position
solution
we know here water is flowing north and ship must go south at an equal rate so that the velocities cancel and the ship just goes west
so it become like triangle with 3.3 point down and the hypotenuse is 11
so by triangle
hypotenuse ×cos(angle) = adjacent side
11 ×cos(angle) = 3.3
cos(angle) = 0.3
angle = 72.54 degree west of south
Hard question thx for the points give me brainlest points plz
Answer:
The height of the bridge is 78.4 m.
Explanation:
Given;
time of the stone motion off the bridge, t = 4.0 s
acceleration due to gravity, g = 9.8 m/s²
The height of the bridge is given by;
h = ut + ¹/₂gt²
where;
u is the initial velocity of the stone, u = 0
h = ¹/₂gt²
h = ¹/₂(9.8)(4)²
h = 78.4 m
Therefore, the height of the bridge is 78.4 m.
Answer:
See the answers below.
Explanation:
In order to solve this problem we must use the principle of energy conservation. Which tells us that the energy of a body will always be the same regardless of where it is located. For this case we have two points, point A and point B. Point A is located at the top at 120 [m] and point B is in the middle of the cliff at 60 [m].

The important thing about this problem is to identify the types of energy at each point. Let's take the reference level of potential energy at a height of zero meters. That is, at this point the potential energy is zero.
So at point A we have potential energy and since a velocity of 18 [m/s] is printed, we additionally have kinetic energy.

At Point B the rock is still moving downward, therefore we have kinetic energy and since it is 60 [m] with respect to the reference level we have potential energy.

Therefore we will have the following equation:
![(6.5*9.81*120)+(0.5*6.5*18^{2} )=(6.5*9.81*60)+(0.5*6.5*v_{B}^{2} )\\3.25*v_{B}^{2} =4878.9\\v_{B}=\sqrt{1501.2}\\v_{B}=38.75[m/s]](https://tex.z-dn.net/?f=%286.5%2A9.81%2A120%29%2B%280.5%2A6.5%2A18%5E%7B2%7D%20%29%3D%286.5%2A9.81%2A60%29%2B%280.5%2A6.5%2Av_%7BB%7D%5E%7B2%7D%20%29%5C%5C3.25%2Av_%7BB%7D%5E%7B2%7D%20%3D4878.9%5C%5Cv_%7BB%7D%3D%5Csqrt%7B1501.2%7D%5C%5Cv_%7BB%7D%3D38.75%5Bm%2Fs%5D)
The kinetic energy can be easily calculated by means of the kinetic energy equation.
![KE_{B}=\frac{1}{2} *m*v_{B}^{2}\\KE_{B}=0.5*6.5*(38.75)^{2}\\KE_{B}=4878.9[J]](https://tex.z-dn.net/?f=KE_%7BB%7D%3D%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av_%7BB%7D%5E%7B2%7D%5C%5CKE_%7BB%7D%3D0.5%2A6.5%2A%2838.75%29%5E%7B2%7D%5C%5CKE_%7BB%7D%3D4878.9%5BJ%5D)
In order to calculate the velocity at the bottom of the cliff where the reference level of potential energy (potential energy equal to zero) is located, we must pose the same equation, with the exception that at the new point there is only kinetic energy.
![E_{A}=E_{C}\\6.5*9.81*120+(0.5*9.81*18^{2} )=0.5*6.5*v_{C}^{2} \\v_{c}^{2} =\sqrt{2843.39}\\v_{c}=53.32[m/s]](https://tex.z-dn.net/?f=E_%7BA%7D%3DE_%7BC%7D%5C%5C6.5%2A9.81%2A120%2B%280.5%2A9.81%2A18%5E%7B2%7D%20%29%3D0.5%2A6.5%2Av_%7BC%7D%5E%7B2%7D%20%5C%5Cv_%7Bc%7D%5E%7B2%7D%20%3D%5Csqrt%7B2843.39%7D%5C%5Cv_%7Bc%7D%3D53.32%5Bm%2Fs%5D)