Answer:
88 m/s
Explanation:
To solve the problem, we can use the following SUVAT equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
d is the distance covered
For the car in this problem, we have
d = 484 m is the stopping distance
v = 0 is the final velocity
is the acceleration
Solving for u, we find the initial velocity:

Answer:
8 N North.
Explanation:
Given that,
One force has a magnitude of 10 N directed north, and the other force has a magnitude of 2 N directed south.
We need to find the magnitude of net force acting on the object.
Let North is positive and South is negative.
Net force,
F = 10 N +(-2 N)
= 8 N
So, the magnitude of net force on the object is 8 N and it is in North direction (as it is positive). Hence, the correct option is (d) "8N north".
The fraction of the water must evaporate to remove precisely enough energy to keep the temperature constant when water at 37°c has a latent heat of vaporization of lv = 580 kcal/kg is 2.58 times 10 to the minus 3.
Vaporization is the process by which a substance is transformed from its liquid or solid state into its gaseous (vapour) state. Boiling is the term for the vaporization process when conditions permit the creation of vapour bubbles within a liquid. Sublimation is the process of directly converting a solid to a liquid.
Boiling and evaporation are the two processes that cause vaporization. Evaporation is the process by which a liquid body's surface changes from a liquid to a gas, as in the case of a drop of water on hot concrete evaporating into a gas. A liquid is said to be boiling when it is heated to the point at which it begins to give off steam, as when you boil water on a stove. The process of converting a substance from its liquid or solid state into its gaseous (vapour) state is known as vaporization.
To learn more about vaporization please visit - brainly.com/question/12625048
#SPJ4
Answer:The rate of ejection of photoelectrons will increase
Explanation:
If the frequency of incident monochromatic light is held constant and its intensity is increased, the rate of ejection of photoelectrons from the metal surface increases with increase in intensity of the monochromatic light. More current flows due to more ejection of photoelectrons.