To find a cofunction with the same value as the expression csc 52*, you would use the formula like this. csc (x) = sec (90-x). So if you use csc(52) that equals sec(90-52). This in turn, equals sec(38). So the answer is B.
If you're using the app, try seeing this answer through your browser: brainly.com/question/3000160————————
Find the derivative of
![\mathsf{y=\ell n(sec\,x+tan\,x)}\\\\\\ \mathsf{y=\ell n\!\left(\dfrac{1}{cos\,x}+\dfrac{sin\,x}{cos\,x} \right )}\\\\\\ \mathsf{y=\ell n\!\left(\dfrac{1+sin\,x}{cos\,x} \right )}](https://tex.z-dn.net/?f=%5Cmathsf%7By%3D%5Cell%20n%28sec%5C%2Cx%2Btan%5C%2Cx%29%7D%5C%5C%5C%5C%5C%5C%20%5Cmathsf%7By%3D%5Cell%20n%5C%21%5Cleft%28%5Cdfrac%7B1%7D%7Bcos%5C%2Cx%7D%2B%5Cdfrac%7Bsin%5C%2Cx%7D%7Bcos%5C%2Cx%7D%20%5Cright%20%29%7D%5C%5C%5C%5C%5C%5C%20%5Cmathsf%7By%3D%5Cell%20n%5C%21%5Cleft%28%5Cdfrac%7B1%2Bsin%5C%2Cx%7D%7Bcos%5C%2Cx%7D%20%5Cright%20%29%7D)
You can treat
y as a composite function of
x:
![\left\{\! \begin{array}{l} \mathsf{y=\ell n\,u}\\\\ \mathsf{u=\dfrac{1+sin\,x}{cos\,x}} \end{array} \right.](https://tex.z-dn.net/?f=%5Cleft%5C%7B%5C%21%20%5Cbegin%7Barray%7D%7Bl%7D%20%5Cmathsf%7By%3D%5Cell%20n%5C%2Cu%7D%5C%5C%5C%5C%20%5Cmathsf%7Bu%3D%5Cdfrac%7B1%2Bsin%5C%2Cx%7D%7Bcos%5C%2Cx%7D%7D%20%5Cend%7Barray%7D%20%5Cright.)
so use the chain rule to differentiate
y:
![\mathsf{\dfrac{dy}{dx}=\dfrac{dy}{du}\cdot \dfrac{du}{dx}}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{d}{du}(\ell n\,u)\cdot \dfrac{d}{dx}\!\left(\dfrac{1+sin\,x}{cos\,x}\right)}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7Bdy%7D%7Bdu%7D%5Ccdot%20%5Cdfrac%7Bdu%7D%7Bdx%7D%7D%5C%5C%5C%5C%5C%5C%20%5Cmathsf%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7Bd%7D%7Bdu%7D%28%5Cell%20n%5C%2Cu%29%5Ccdot%20%5Cdfrac%7Bd%7D%7Bdx%7D%5C%21%5Cleft%28%5Cdfrac%7B1%2Bsin%5C%2Cx%7D%7Bcos%5C%2Cx%7D%5Cright%29%7D)
The first derivative is
1/u, and the second one can be evaluated by applying the quotient rule:
![\mathsf{\dfrac{dy}{dx}=\dfrac{1}{u}\cdot \dfrac{\frac{d}{dx}(1+sin\,x)\cdot cos\,x-(1+sin\,x)\cdot \frac{d}{dx}(cos\,x)}{(cos\,x)^2}}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{1}{u}\cdot \dfrac{(0+cos\,x)\cdot cos\,x-(1+sin\,x)\cdot (-\,sin\,x)}{(cos\,x)^2}}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7B1%7D%7Bu%7D%5Ccdot%20%5Cdfrac%7B%5Cfrac%7Bd%7D%7Bdx%7D%281%2Bsin%5C%2Cx%29%5Ccdot%20cos%5C%2Cx-%281%2Bsin%5C%2Cx%29%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%28cos%5C%2Cx%29%7D%7B%28cos%5C%2Cx%29%5E2%7D%7D%5C%5C%5C%5C%5C%5C%20%5Cmathsf%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7B1%7D%7Bu%7D%5Ccdot%20%5Cdfrac%7B%280%2Bcos%5C%2Cx%29%5Ccdot%20cos%5C%2Cx-%281%2Bsin%5C%2Cx%29%5Ccdot%20%28-%5C%2Csin%5C%2Cx%29%7D%7B%28cos%5C%2Cx%29%5E2%7D%7D)
Multiply out those terms in parentheses:
![\mathsf{\dfrac{dy}{dx}=\dfrac{1}{u}\cdot \dfrac{cos\,x\cdot cos\,x+(sin\,x+sin\,x\cdot sin\,x)}{(cos\,x)^2}}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{1}{u}\cdot \dfrac{cos^2\,x+sin\,x+sin^2\,x}{(cos\,x)^2}}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{1}{u}\cdot \dfrac{(cos^2\,x+sin^2\,x)+sin\,x}{(cos\,x)^2}\qquad\quad (but~~cos^2\,x+sin^2\,x=1)}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{1}{u}\cdot \dfrac{1+sin\,x}{(cos\,x)^2}}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7B1%7D%7Bu%7D%5Ccdot%20%5Cdfrac%7Bcos%5C%2Cx%5Ccdot%20cos%5C%2Cx%2B%28sin%5C%2Cx%2Bsin%5C%2Cx%5Ccdot%20sin%5C%2Cx%29%7D%7B%28cos%5C%2Cx%29%5E2%7D%7D%5C%5C%5C%5C%5C%5C%20%5Cmathsf%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7B1%7D%7Bu%7D%5Ccdot%20%5Cdfrac%7Bcos%5E2%5C%2Cx%2Bsin%5C%2Cx%2Bsin%5E2%5C%2Cx%7D%7B%28cos%5C%2Cx%29%5E2%7D%7D%5C%5C%5C%5C%5C%5C%20%5Cmathsf%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7B1%7D%7Bu%7D%5Ccdot%20%5Cdfrac%7B%28cos%5E2%5C%2Cx%2Bsin%5E2%5C%2Cx%29%2Bsin%5C%2Cx%7D%7B%28cos%5C%2Cx%29%5E2%7D%5Cqquad%5Cquad%20%28but~~cos%5E2%5C%2Cx%2Bsin%5E2%5C%2Cx%3D1%29%7D%5C%5C%5C%5C%5C%5C%20%5Cmathsf%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7B1%7D%7Bu%7D%5Ccdot%20%5Cdfrac%7B1%2Bsin%5C%2Cx%7D%7B%28cos%5C%2Cx%29%5E2%7D%7D)
Substitute back for
![\mathsf{u=\dfrac{1+sin\,x}{cos\,x}:}](https://tex.z-dn.net/?f=%5Cmathsf%7Bu%3D%5Cdfrac%7B1%2Bsin%5C%2Cx%7D%7Bcos%5C%2Cx%7D%3A%7D)
![\mathsf{\dfrac{dy}{dx}=\dfrac{1}{~\frac{1+sin\,x}{cos\,x}~}\cdot \dfrac{1+sin\,x}{(cos\,x)^2}}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{cos\,x}{1+sin\,x}\cdot \dfrac{1+sin\,x}{(cos\,x)^2}}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7B1%7D%7B~%5Cfrac%7B1%2Bsin%5C%2Cx%7D%7Bcos%5C%2Cx%7D~%7D%5Ccdot%20%5Cdfrac%7B1%2Bsin%5C%2Cx%7D%7B%28cos%5C%2Cx%29%5E2%7D%7D%5C%5C%5C%5C%5C%5C%20%5Cmathsf%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7Bcos%5C%2Cx%7D%7B1%2Bsin%5C%2Cx%7D%5Ccdot%20%5Cdfrac%7B1%2Bsin%5C%2Cx%7D%7B%28cos%5C%2Cx%29%5E2%7D%7D)
Simplifying that product, you get
![\mathsf{\dfrac{dy}{dx}=\dfrac{1}{1+sin\,x}\cdot \dfrac{1+sin\,x}{cos\,x}}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{1}{cos\,x}}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7B1%7D%7B1%2Bsin%5C%2Cx%7D%5Ccdot%20%5Cdfrac%7B1%2Bsin%5C%2Cx%7D%7Bcos%5C%2Cx%7D%7D%5C%5C%5C%5C%5C%5C%20%5Cmathsf%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7B1%7D%7Bcos%5C%2Cx%7D%7D)
∴
![\boxed{\begin{array}{c}\mathsf{\dfrac{dy}{dx}=sec\,x} \end{array}}\quad\longleftarrow\quad\textsf{this is the answer.}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%5Cmathsf%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3Dsec%5C%2Cx%7D%20%5Cend%7Barray%7D%7D%5Cquad%5Clongleftarrow%5Cquad%5Ctextsf%7Bthis%20is%20the%20answer.%7D)
I hope this helps. =)
Tags: <em>derivative composite function logarithmic logarithm log trigonometric trig secant tangent sec tan chain rule quotient rule differential integral calculus</em>
Answer: is that all the information in the problem??
The vertices of a right triangle are (–6, 4), (0, 0), and (x, 0). Find the value of x.
Answer:
![x^2-2x+1](https://tex.z-dn.net/?f=x%5E2-2x%2B1)
Step-by-step explanation:
=> (x-1)(x-1)
<u><em>Using FOIL</em></u>
=> ![x^2-x-x+1](https://tex.z-dn.net/?f=x%5E2-x-x%2B1)
=> ![x^2-2x+1](https://tex.z-dn.net/?f=x%5E2-2x%2B1)