Answer:
1. V2.
2. 299K.
3. 451K
4. 0.25 x 451 = V2 x 299
Explanation:
1. The data obtained from the question include:
Initial volume (V1) = 0.25mL
Initial temperature (T1) = 26°C
Final temperature (T2) = 178°C
Final volume (V2) =.?
2. Conversion from celsius to Kelvin temperature.
T(K) = T (°C) + 273
Initial temperature (T1) = 26°C
Initial temperature (T1) = 26°C + 273 = 299K
3. Conversion from celsius to Kelvin temperature.
T(K) = T (°C) + 273
Final temperature (T2) = 178°C
Final temperature (T1) = 178°C + 273 = 451K
4. Initial volume (V1) = 0.25mL
Initial temperature (T1) = 299K
Final temperature (T2) = 451K
Final volume (V2) =.?
V1 x T2 = V2 x T1
0.25 x 451 = V2 x 299
Answer:
Its mass is about the same as that of a proton
Explanation:
Answer:
No.
Explanation:
The reason comes the <em>Law of Conservation of Mass</em>.
In an ordinary chemical reaction, <em>you cannot create or destroy atoms</em>.
So, you must have as many atoms at the beginning of a reaction (in the reactants) as at the end (in the products)
We use this principle to balance chemical equations.
For example, the equation for the formation of water from hydrogen and oxygen is
2H₂ + O₂ ⟶ 2H₂O
There are four atoms of H and two of O both before and after the reaction.
Answer:
What was the experimental measurement of the gas?
Explanation:
Answer:
The
solution has a higher osmotic pressure and higher boiling point than LiCl solution.
Explanation:
As concentrations of two aqueous solutions are same therefore we can write:
,
and 
where
,
and
are lowering of vapor pressure, elevation in boiling point and osmotic pressure of solution respectively.
is van't hoff factor.
= total number of ions generated from dissolution of one molecule of a substance (for strong electrolyte).
Here both
and LiCl are strong electrolytes.
So,
and 
Hence, lowering of vapor pressure, elevation in boiling point and osmotic pressure will be higher for
solution.
Therefore the
solution has a higher osmotic pressure and higher boiling point than LiCl solution.