Answer:
0.0745 mole of hydrogen gas
Explanation:
Given parameters:
Number of H₂SO₄ = 0.0745 moles
Number of moles of Li = 1.5107 moles
Unknown:
Number of moles of H₂ produced = ?
Solution:
To solve this problem, we have to work from the known specie to the unknown one.
The known specie in this expression is the sulfuric acid, H₂SO₄. We can compare its number of moles with that of the unknown using a balanced chemical equation.
Balanced chemical equation:
2Li + H₂SO₄ → Li₂SO₄ + H₂
From the balanced equation;
Before proceeding, we need to obtain the limiting reagent. This is the reagent whose given proportion is in short supply. It determines the extent of the reaction.
2 mole of Li reacted with 1 mole of H₂SO₄
1.5107 mole of lithium will react with
= 0.7554mole of H₂SO₄
But we were given 0.0745 moles,
This suggests that the limiting reagent is the sulfuric acid because it is in short supply;
since 1 mole of sulfuric acid produced 1 mole of hydrogen gas;
0.0745 mole of sulfuric acid will produce 0.0745 mole of hydrogen gas
Density gives mass of object per volume...... Here, density is given 8.90 g/cm3 therefore, per cubic centimeter contains 8.90 g Ni. mole of Ni = mass / atomic mass = 8.90 / 58.6934 = 0.1516 mole number of atoms: mole * 6.022 * 10^23 = 0.1516 * 6.022 * 10^23 = 0.9129 * 10^23 = 0.9 * 10^23 (approx.)
From own experience, I know that OsO4 is colorless, but Cr2O3 is actually a solid green from what I have seen. but I guess it could appear yellow-greenish.
<>"One such trend is closely linked to atomic radii -- ionic radii. Neutral atoms tend to increase in size down a group and decrease across a period. When a neutral atom gains or loses an electron, creating an anion or cation, the atom's radius increases or decreases, respectively."<>
Answer:
Explanation:
a) for 1.000 g X: 0.1621 g Y
ratio of mass of element Y = 2.100g : 0.1621g
= 1 : 0.07
b) 1.000 g X: 0.7391 g Y
ratio of mass of element Y = 2.100g : 0.7391g
= 1: 0.35 , = 20:7
c) 1.000 g X: 0.2579 g Y
ratio of mass of element Y = 2.100g : 0.2579g
= 1 : 0.12
d) 1.000 g X: 0.2376 g Y
ratio of mass of element Y = 2.100g : 0.2376g
= 1: 0.11
e) 1.000 g X: 0.2733 g Y
ratio of mass of element Y = 2.100g : 0.2733g
= 1 : 0.13
From the values obtained , the closest that is in compliance with the law f multiple proportions is option B