1.1214 mL will a 0.205-mole sample of He occupy at 3.00 atm and 200 K.
<h3>What is an ideal gas equation?</h3>
The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
Using equation PV=nRT, where n is the moles and R is the gas constant. Then divide the given mass by the number of moles to get molar mass.
Given data:
P= 3.00 atm
V= ?
n=0.205 mole
R= 
T=200 K
Putting value in the given equation:


V= 1.1214 mL
Learn more about the ideal gas here:
brainly.com/question/27691721
#SPJ1
We need to first add both of the solution volumes together 35+115=150. Now we can divide the volume of the ethanol by the total volume 35/150=.233. To double check we can multiply the total volume by the percentage of ethanol by volume we got as a solution 150x.233=35. So the percentage by volume of ethanol in the solution is .233x100=23.3%.
We will assume that the only reactants are x and y and that the only product is xy.
Based on the law of mass conservation, mass is an isolated system that can neither be created nor destroyed.
Applying this concept to the chemical reaction, we will find that the total mass of the reactants must be equal to the total mass of the products,
therefore:
mass of x + mass of y = mass of xy
12.2 + mass of y = 78.9
mass of y = 78.9 - 12.2 = 66.7 grams
Answer:
well we can't awnser this we don't have the full information srry♥️✨