Answer:
(the relation you wrote is not correct, there may be something missing, so I will simplify the initial expression)
Here we have the equation:

We can rewrite this as:

Now we can add and subtract cos^2(x)*sin^2(x) to get:

We can complete squares to get:

and we know that:
cos^2(x) + sin^2(x) = 1
then:

This is the closest expression to what you wrote.
We also know that:
sin(x)*cos(x) = (1/2)*sin(2*x)
If we replace that, we get:

Then the simplification is:

Answer:
-1
Step-by-step explanation:
Has to be the opposite
Answer:
The two points solutions to the system of equations are: (2, 3) and (-1,6)
Step-by-step explanation:
These system of equations consists of a parabola and a line. We need to find the points at which they intersect:

Since we were able to factor out the quadratic expression, we can say that the x-values solution of the system are:
x = 2 and x = -1
Now, the associated y values we can get using either of the original equations for the system. We pick to use the linear equation for example:
when x = 2 then 
when x= -1 then 
Then the two points solutions to the system of equations are: (2, 3) and (-1,6)
Answer:
y=2/5x-15
Step-by-step explanation:
y-y=m(x-x¹)
y-(-11)=2/5(x-10)
y+11=2/5x-4
-11 -11
y=2/5x-15
D) you just multiply the numerator and denominator by 6 to get an equivalent fraction