Answers:
8.70 g
Step-by-step explanation:
We know we will need a balanced equation with masses and molar masses, so let’s <em>gather all the information</em> in one place.
M_r: 32.00 44.01
2C₈H₁₈ + 25O₂ ⟶ 16CO₂ + 18H₂O
m/g: 9.88
(a) Calculate the <em>moles of O₂
</em>
n = 9.88 g O₂ ×1 mol O₂ /32.00 g O₂
n = 0.3088 mol O₂
(b) Calculate the <em>moles of CO₂</em>
The molar ratio is (16 mol CO₂/25 mol O₂)
n = 0.3088 mol O₂ × (16 mol CO₂/25 mol O₂)
n = 0.1976 mol CO₂
(c) Calculate the <em>mass of CO₂
</em>
Mass of CO₂ = 0.1976 mol CO₂ × (44.01 g CO₂/1 mol CO₂)
Mass of CO₂ = 8.70 g CO₂
Covalent bonds but not ionic
Explanation:
Scientific evidences abound of the occurrence of plastic pollution, from mega- to nano-sized plastics, in virtually all matrixes of the environment. Apart from the direct effects of plastics and microplastics pollution such as entanglement, inflammation of cells and gut blockage due to ingestion, plastics are also able to act as vectors of various chemical contaminants in the aquatic environment. This paper provides a review of the association of plastic additives with environmental microplastics, how the structure and composition of polymers influence sorption capacities and highlights some of the models that have been employed to interpret experimental data from recent sorption studies. The factors that influence the sorption of chemical contaminants such as the degree of crystallinity, surface weathering, and chemical properties of contaminants. and the implications of chemical sorption by plastics for the marine food web and human health are also discussed. It was however observed that most studies relied on pristine or artificially aged plastics rather than field plastic samples for studies on chemical sorption by plastics.
The subatomic particle that identifies the atom is the number of protons. This is what distinguishes an element that is is flammmable, hydrogen to one that is essential component in water, oxygen.
Answer:
183 cg = 0.00183 kg
0.25 kg = 250 g
Explanation:
Use conversion factors. 1kg is equal to 1 x 10^5 cg (100000) and 1 kg is equal to 1 x 10^3 grams (1000 grams).