Answer:
position as a function of time is y = 0.05 × cos(9.9)t
Explanation:
given data
mass = 5 kg
length = 10 cm = 0.1 m
displaced = 5 cm
to find out
position as a function of time
solution
we will apply here equilibrium that is
mass × g = k × length
put here value and find k
k = 
k = 490 N/m
and ω is
ω = 
ω = 
ω = 9.9
so here position w.r.t time is
y = 0.05 × cosωt
y = 0.05 × cos(9.9)t
so position as a function of time is y = 0.05 × cos(9.9)t
Answer:
v₂ = 15.24 m / s
Explanation:
This is an exercise in fluid mechanics
Let's write Bernoulli's equation, where the subscript 1 is for the factory pipe and the subscript 2 is for the tank.
P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂
They indicate the pressure in the factory P₁ = 140000 Pa, the velocity
v₁ = 5.5 m / s and the initial height is zero y₁ = 0
the tank is at a pressure of P2 = 2000 Pa and a height of y₂ = 6.0 m
P₁ -P₂ + ρ g (y₁ -y₂) + ½ ρ v₁² = ½ ρ v₂²
let's calculate
140,000 - 2000 + ρ 9.8 (0- 6) + ½ ρ 5.5² = ½ ρ v₂²
138000 - ρ 58.8 + ρ 15.125 = ½ ρ v2²
v₂² = 2 (138000 /ρ - 58.8 + 15.125)
v₂ =
In the exercise they do not indicate what type of liquid is being used, suppose it is water with
ρ = 1000 kg / m³
v₂ =
v₂ = 15.24 m / s
Answer:
0.01154 A
Explanation:
We have given the energy in the magnetic field
Value of inductance L =0.060 H
Energy stored in magnetic field is given by 


So the current flowing through rectangular toroid will be 0.01154 A
People will always have something easy to to there handy work
Answer:
The energy of each photon in the light beam is
.
Explanation:
Given that,
Index of refraction of glass =1.55
Index of refraction of material =1.30
Wavelength = 115 nm
We need to calculate the energy of each photon in the light beam
Using formula of energy

Where, h = Planck constant
=wavelength
c = speed of light
Put the value into formula


Hence, The energy of each photon in the light beam is
.