Answer:
'A ball is thrown straight up with an initial speed of 12 m/s_ What are the velocity and acceleration when it is at the top of its trajectory? Select all apply. v=12 mls a = 0 v =-12 mls a = 9.8 m/s2 Oa=-9.8 m/s2'
Explanation:
I look it up
Hope this helps
Not sure but just coming to say good luck and take your time
Question
What is the length of the pipe?
Answer:
(a) 0.52m
(b) f2=640 Hz and f3=960 Hz
(c) 352.9 Hz
Explanation:
For an open pipe, the velocity is given by

Making L the subject then

Where f is the frequency, L is the length, n is harmonic number, v is velocity
Substituting 1 for n, 320 Hz for f and 331 m/s for v then

(b)
The next two harmonics is given by
f2=2fi
f3=3fi
f2=3*320=640 Hz
f3=3*320=960 Hz
Alternatively,
and 

(c)
When v=367 m/s then

To solve this problem it is necessary to apply the concepts related to Hooke's Law as well as Newton's second law.
By definition we know that Newton's second law is defined as

m = mass
a = Acceleration
By Hooke's law force is described as

Here,
k = Gravitational constant
x = Displacement
To develop this problem it is necessary to consider the two cases that give us concerning the elongation of the body.
The force to keep in balance must be preserved, so the force by the weight stipulated in Newton's second law and the force by Hooke's elongation are equal, so

So for state 1 we have that with 0.2kg there is an elongation of 9.5cm


For state 2 we have that with 1Kg there is an elongation of 12cm


We have two equations with two unknowns therefore solving for both,


In this way converting the units,


Therefore the spring constant is 313.6N/m