<span>The maxima of an equation can be obtained by taking the 1st
derivative of the equation then equate it to 0.</span>The value of N that result in best yield is when dy/dn = 0.
Taking the 1st derivative of
the equation y=(kn)/(9+n^2) :<span>
</span>
By using the quotient
rule the form of the equation is:<span>
y = g(n) / h(n)
where:</span>
g(n) = kn --->
g'(n) = k
<span>
<span>h(n) = 9 + n^2 ---> h'(n) = 2n </span>
dy/dn is defined as:
<span>dy/dn = [h(n) * g'(n) - h'(n) * g(n)] / h(n)^2
dy/dn = [(9 + n^2)(k) - (kn)(2n)] / (9 +
n^2)^2
dy/dn = (9k + kn^2 - 2kn^2) / (9 + n^2)^2
dy/dn = (9k - kn^2) / (9 + n^2)^2
dy/dn = k(9 - n^2) / (9 + n^2)^2
<span>Equate dy/dn = 0, then solve for n
k(9 - n^2) / (9 + n^2)^2 = 0
k(9 - n^2) = 0
9 - n^2 = 0
n^2 = 9
n = sqrt(9)
n = 3
<span>Answer: The nitrogen
level that gives the best yield of agricultural crops is 3 units.</span></span></span></span>
Answer:
decreases, increases, minimum (zero)
Explanation:
Kinetic energy of a body is directly proportional to the square of velocity of the body and the potential energy is directly proportional to the height of the body at which it is placed.
The formula for the kinetic energy is
K = 1/2 m v^2
The formula for the potential energy is
U = m g h
As the body goes up its kinetic energy decreases as the velocity of the object decreases.
As the body goes up the potential energy increases as the height increases.
At the top most point, the velocity of teh object is zero, so the kinetic energy at the top is zero.
The correct answer for the question that is being presented above is this one: "<span>c. Planets orbit in elliptical patterns; a planet's orbit covers equal areas in equal amounts of time; planets' orbits are shorter or longer depending on their distance from the Sun."</span>
Here are the following choices:
a. Planets orbit in elliptical patterns; the bigger the planet, the more gravitational pull; a planet's gravitational pull is stronger or weaker depending on its distance from the Sun.
b. A planet's orbit covers equal distances in equal amounts of time; the speed of a planet's orbit depends on its distance from the Sun; the bigger the planet, the slower it moves.
c. Planets orbit in elliptical patterns; a planet's orbit covers equal areas in equal amounts of time; planets' orbits are shorter or longer depending on their distance from the Sun.
The wavelength of the standing wave at fourth harmonic is; λ = 0.985 m and the frequency of the wave at the calculated wavelength is; f = 36.84 Hz
Given Conditions:
mass of string; m = 0.0133 kg
Force on the string; F = 8.89 N
Length of string; L = 1.97 m
1. To find the wavelength at the fourth normal node.
At the fourth harmonic, there will be 2 nodes.
Thus, the wavelength will be;
λ = L/2
λ = 1.97/2
λ = 0.985 m
2. To find the velocity of the wave from the formula;
v = √(F/(m/L)
Plugging in the relevant values gives;
v = √(8.89/(0.0133/1.97)
v = 36.2876 m/s
Now, formula for frequency here is;
f = v/λ
f = 36.2876/0.985
f = 36.84 Hz
Read more about Harmonics of standing waves at; brainly.com/question/10274257
#SPJ4