1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rina8888 [55]
2 years ago
7

Let D be the region bounded by the paraboloids; z = 6 - x² - y² and z = x² + y².

Mathematics
1 answer:
Liono4ka [1.6K]2 years ago
7 0

Answer:

∫∫∫1 dV=4\sqrt{3}π

Step-by-step explanation:

From Exercise we have  

z=6-x^{2}-y^{2}

z=x^{2}+y^{2}

we get

2z=6

z=3

x^{2}+y^{2}=3

We use the polar coordinates, we get

x=r cosθ

y=r sinθ

x^{2}+y^{2}&=r^{2}

r^{2}=3

We get at the limits of the variables that well need for our integral

x^{2}+y^{2}≤z≤3

0≤r ≤\sqrt{3}

0≤θ≤2π

Therefore, we get a triple integral

\int \int \int 1\, dV&=\int \int \left(\int_{x^2+y^2}^{3} 1\, dz\right) dA

=\int \int \left(z|_{x^2+y^2}^{3} \right) dA

=\int \int\ \left(3-(x^2+y^2) \right) dA

=\int \int\ \left(3-r^2 \right) dA

=\int_{0}^{2\pi}\int_{0}^{\sqrt{3}} (3-r^2) dr dθ

=3\int_{0}^{2\pi}\int_{0}^{\sqrt{3}}  1 dr dθ-\int_{0}^{2\pi}\int_{0}^{\sqrt{3}} r^2 dr dθ

=3\int_{0}^{2\pi} r|_{0}^{\sqrt{3}}  dθ-\int_{0}^{2\pi} \frac{r^3}{3}|_{0}^{\sqrt{3}}dθ

=3\sqrt{3}\int_{0}^{2\pi} 1 dθ-\sqrt{3}\int_{0}^{2\pi} 1 dθ

=3\sqrt{3} ·2π-\sqrt{3}·2π

=4\sqrt{3}π

We get

∫∫∫1 dV=4\sqrt{3}π

You might be interested in
Choose the graph of the inequality X&lt; 7<br>choose one:​
Dafna11 [192]

3rd one. The circle is on 7 and is going to the left.

7 0
2 years ago
Johnny says that he solved
tatuchka [14]

Answer:

Yes 10.7

Step-by-step explanation:

7 0
2 years ago
Help based offf order of operations please help
JulijaS [17]

Answer:

The answer for :

h. \:  \:   \: \frac{5}{6}

i. \:  \:  \:  \frac{35}{32}

k. \:  \:  \:  \frac{-29}{20}

l. \:  \:  \:  \frac{13}{15}

Step-by-step explanation:

Question h:

\frac{2}{3}  + ( \frac{1}{3}  \times  \frac{1}{2} )

=  \frac{2}{3}  +  \frac{1}{6}

=  \frac{2 \times 2}{3 \times 2}  +  \frac{1}{6}

=  \frac{4}{6}  +  \frac{1}{6}

=  \frac{5}{6}

Question i:

\frac{7}{8}  +  \frac{1}{4}  \times ( \frac{3}{2}  -  \frac{5}{8} )

=  \frac{7}{8}  +  \frac{1}{4}  \times ( \frac{3 \times 4}{2 \times 4}  -  \frac{5}{8} )

= \frac{7}{8}  +  \frac{1}{4}  \times ( \frac{12}{8}  -  \frac{5}{8} )

=  \frac{7}{8}  +  (\frac{1}{4}  \times  \frac{7}{8} )

=  \frac{7}{8}  +  \frac{7}{32}

=  \frac{7  \times 4}{8 \times 4}  +  \frac{7}{32}

=  \frac{28}{32}  +  \frac{7}{32}

=  \frac{35}{32}

Question k:

\frac{3}{4}  - ( \frac{12}{7}  \div  \frac{12}{21} ) +  \frac{4}{5}

=  \frac{3}{4}  - ( \frac{12}{7}  \times  \frac{21}{12} ) +  \frac{4}{5}

=  \frac{3}{4}  -  \frac{3}{1}  +  \frac{4}{5}

= \frac{3 \times 5}{4 \times 5}  -  \frac{3 \times 20}{1 \times 20} +  \frac{4 \times 4}{5 \times 4}

=  \frac{15}{20}   -   \frac{60}{20} +  \frac{16}{20}

=  -  \frac{29}{20}

Question l:

\frac{5}{2}  \times ( \frac{2}{3}  -  \frac{1}{5} ) - ( \frac{2}{5}  \div  \frac{4}{3} )

=  \frac{5}{2}  \times ( \frac{2 \times 5}{3 \times 5}  -  \frac{1 \times 3}{5 \times 3} ) - ( \frac{2}{5}  \times  \frac{3}{4} )

=  \frac{5}{2}  \times ( \frac{10}{15}  -  \frac{3}{15} ) -  \frac{3}{10}

=  (\frac{5}{2} \times   \frac{7}{15}) -  \frac{3}{10}

=  \frac{7}{6}  -  \frac{3}{10}

=  \frac{7 \times 5}{6 \times 5}  -  \frac{3 \times 3}{10 \times 3}

=  \frac{35}{30}  -  \frac{9}{30}

=  \frac{26}{30}

=  \frac{13}{15}

8 0
3 years ago
The table shows the number of candies packed by Machine A. The equation shows the number of candies packed by Machine B. In both
Bogdan [553]
answer: 360

Given:
Machine A Candy Packing
x(minutes)  y(candies)
  5               600
10             1200
15             1800
20             2400

Machine B : y = 150x

Find number of candies packed in 12 minutes.

Machine A : 600/5mins = 120 candies per minute
120 * 12 minutes = 1,440 candies

Machine B : y = 150x ⇒ y = 150(12) ⇒ y = 1,800

Machine B: 1,800
Machine A: 1,440
Difference      360

Machine B packed 360 more candies than Machine A in 12 minutes.
6 0
3 years ago
Subtract using the number line.
Fofino [41]

=-9

Step-by-step explanation:

-2-(+7)

=-2-7

=-9 solve it

7 0
3 years ago
Read 2 more answers
Other questions:
  • A safety regulation states that the maximum angle of elevation for a rescue ladder is 72°. A fire department's longest ladder is
    7·2 answers
  • A pqckage pf 6 boxes of tissue costs $6.48. How much is each box
    13·2 answers
  • Simplify ---<br>(2√7)^2​
    11·1 answer
  • The population of a town increased from 3500 in 2006 to 5350 in 2011. Find the absolute and relative (percent) increase.
    15·1 answer
  • PLZ HELP :( <br><br>THANK YOU SOO MUCH ❤
    7·2 answers
  • Help pls. It would also be great if you show your work
    5·1 answer
  • Angle 3 is 65 degrees. Identify all the other angles that measure 65 degrees.
    13·2 answers
  • Pls help mee for my hw worth branliest and a bunch of thxx
    11·1 answer
  • Mr. Johnson took the price of a watch that was listed at $60 and marked it up by 30%. After the markup, what is the selling pric
    8·1 answer
  • PLEASE HELPP IM TIMED I'LL DIE I'LL GIVE BRAINLIEST AND 15 POINTSSS
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!