Answer:
0.23
Explanation:
- It is known that, the mass to mass ratio of the salt to water
= (mass of salt / mass of water)
= (25.0 g / 105.0 g)
= 0.23
Fluoride is an anion of Fluorine
What this means is that the two have the same number of protons (9), but Fluoride has 10 electrons compared to Fluorine's 9.
So the answers are:
Protons - 9
Neutrons - 9
Electrons - 10
Atomic Number - 9
Atomic Mass - 19 g/mol
<h3><u>Answer;</u></h3>
Dipole-dipole and hydrogen bonding
<h3><u>Explanation;</u></h3>
- <em><u>A solution of water and ethanol contains the dipole-dipole forces and hydrogen bonds as the intermolecular forces between molecules.</u></em>
- <em><u>Hydrogen bonding is a type of interactions between molecules that occurs when a partially negative atom such as oxygen end of one of the molecules is attracted to a partially positive hydrogen end of another molecule.</u></em>
- <em><u>Dipole-dipole forces</u></em> results from the unsymmetrical distribution of electrons, thus the polarity does not balance, thus resulting to a dipole attraction between molecules.
Answer: (2) decreasing the concentration of HCl(aq) to 0.1 M
Explanation: Rate of a reaction depends on following factors:
1. Size of the solute particles: If the reactant molecules are present in smaller size, surface of particles and decreasing the size increases the surface area of the solute particles. Hence, increasing the rate of a reaction.
2. Reactant concentration: The rate of the reaction is directly proportional to the concentration of reactants.
3. Temperature: Increasing the temperature increases the energy of the molecules and thus more molecules can react to give products and rate increases.
(1) Increasing the initial temperature to 25°C will increase the reaction rate.
(2) Decreasing the concentration of HCl(aq) to 0.1 M will decrease the reaction rate due to lesser concentration.
(3) Using 1.2 g of powdered Mg will increase the reaction rate due to large surface area.
(4) Using 2.4 g of Mg ribbon will increase the reaction rate due to high concentration of reactants.