Answer:
0.583 kilojoules
Explanation:
The amount of heat required to pop a single kernel can be calculated using the formula as follows:
Q = m × c × ∆T
Where;
Q = amount of heat (J)
m = mass of water (g)
c = specific heat capacity of water (4.184 J/g°C)
∆T = change in temperature
From the given information, m = 0.905 g, initial temperature (room temperature) = 21°C , final temperature = 175°C, Q = ?
Q = m × c × ∆T
Q = 0.905 × 4.184 × (175°C - 21°C)
Q = 3.786 × 154
Q = 583.044 Joules
In kilojoules i.e. we divide by 1000, the amount of heat is:
= 583.04/1000
= 0.583 kilojoules
Answer:
B. People live longer than they used to
Explanation:
None of the other answers are correct.
Answer:
Biphenyl
Explanation:
The reaction of bromo benzene with magnesium-ether solution yields a Grignard reagent.
The byproduct of this reaction is biphenyl. It is formed when two unreacted bromobenzene molecules are coupled together.
Hence, It is advised that the bromobenzene solution be added slowly to the magnesium-ether solution so that it isn't present in a high concentration, thus reducing the amount of biphenyl by-product formed.
Answer:
V ∝ abc
Explanation:
This task is a joint variation task involving only direct proportionality:
Direct variation is one in which two variables are in direct proportionality to each other. This means that as one increases, the other variable also increases and vice - versa.
Joint variation is one in which one variable is dependent on two or more variables and varies directly as each of them.
In this exercise:
If a ∝ b and a ∝ c, then a ∝ bc
Taking the above three proportionalities,
V ∝ a ∝ b ∝ c
V ∝ a ∝ bc
V ∝ abc