Answer: hes not a country singer if thats what your asking
Explanation:
Answer:
The force that you must exert on the balloon is 1.96 N
Explanation:
Given;
height of water, h = 4.00 cm = 4 x 10⁻² m
effective area, A = 50.0 cm² = 50 x 10⁻⁴ m²
density of water, ρ = 1 x 10³ kg/m³
Gauge pressure of the balloon is calculated as;
P = ρgh
where;
ρ is density of water
g is acceleration due to gravity
h is height of water
P = 1 x 10³ x 9.8 x 4 x 10⁻²
P = 392 N/m²
The force exerted on the balloon is calculated as;
F = PA
where;
P is pressure of the balloon
A is the effective area
F = 392 x 50 x 10⁻⁴
F = 1.96 N
Therefore, the force that you must exert on the balloon is 1.96 N
That is true because if the object is moving at Forceful speeds than it will lose more of its kinetic energy
Answer:
The tropospheric tabulation continues to 11,000 meters (36,089 ft), where the temperature has fallen to −56.5 °C (−69.7 °F), the pressure to 22,632 pascals (3.2825 psi), and the density to 0.3639 kilograms per cubic meter (0.02272 lb/cu ft). Between 11 km and 20 km, the temperature remains constant
Explanation:
Hope this helped, Have a wonderful day!!
The amount of heat needed to increase the temperature of a substance by

is given by

where
m is the mass of the substance

the specific heat capacity

the increase in temperature
In our problem, the mass of the water is m=750 g, the specific heat is

and the amount of heat supplied is

, so if we re-arrange the previous formula we find the increase in temperature of the water: