1.549×10-19lJ is the energy of a photon emitted when an electron in a hydrogen atom undergoes a transition from =7 to =1.
The equation E= hcE =hc, where h is Planck's constant and c is the speed of light, describes the inverse relationship between a photon's energy (E) and the wavelength of light ().
The Rydberg formula is used to determine the energy change.
Rydberg's original formula used wavelengths, but we may rewrite it using units of energy instead. The result is the following.
aaΔE=R(1n2f−1n2i) aa
were
2.17810-18lJ is the Rydberg constant.
The initial and ultimate energy levels are ni and nf.
As a change of pace from
n=5 to n=3 gives us
ΔE
=2.178×10-18lJ (132−152)
=2.178×10-18lJ (19−125)
=2.178×10-18lJ×25 - 9/25×9
=2.178×10-18lJ×16/225
=1.549×10-19lJ
Learn more about Rydberg formula here-
brainly.com/question/13185515
#SPJ4
Answer:
please write in english language so that we can help you
Answer:
<em>"the magnitude of the magnetic field at a point of distance a around a wire, carrying a constant current I, is inversely proportional to the distance a of the wire from that point"</em>
Explanation:
The magnitude of the magnetic field from a long straight wire (A approximately a finite length of wire at least for close points around the wire.) decreases with distance from the wire. It does not follow the inverse square rule as is the electric field from a point charge. We can then say that<em> "the magnitude of the magnetic field at a point of distance a around a wire, carrying a constant current I, is inversely proportional to the distance a of the wire from that point"</em>
From the Biot-Savart rule,
B = μI/2πR
where B is the magnitude of the magnetic field
I is the current through the wire
μ is the permeability of free space or vacuum
R is the distance between the point and the wire, in this case is = a
Velocidad inicial = 20 m/s
velocidad final = 0 m/s
aceleracion = -2 m/s^2
aceleracion = (cambio de velocidad)/(cambio de tiempo)
(cambio de tiempo)= (cambio de velocidad)/aceleracion
tiempo = (-20 m/s)/(-2 m/s^2)
= 10 segundos
x = (x(inicial)) + (v(inicial))(tiempo) + 1/2(aceleracion)(tiempo)^2
x(inicial) = 0
x = (20 m/s)(10 s) + 1/2 (-2m/s^2)(10 s)^2
x = 200 m - 100 m
x = 100 m (el espacio recorrido en los dos segundos)
espero que esto te ayude! buena suerte!
The hot sun beating down on the grass is hot because the grass aborbs the heat from the sun
Merry Christmas!!!
-Kaden&Sydney