1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dezoksy [38]
3 years ago
9

What potential difference is needed to give a helium nucleus (q=2e) 85.0 kev of kinetic energy?

Physics
1 answer:
Vilka [71]3 years ago
6 0
The kinetic energy K given to the helium nucleus is equal to its potential energy, which is 
E=q \Delta V
where q=2e is the charge of the helium nucleus, and \Delta V is the potential difference applied to it.
Since we know the kinetic energy, we have
E=K=85~keV=q \Delta V
and from this we can find the potential difference:
\Delta V =  \frac{K}{q}= \frac{85~keV}{2e}=42.5~kV

You might be interested in
Astronomers have observed a small, massive object at the center of our Milky Way Galaxy. A ring of material orbits this massive
Setler [38]

Answer:

The mass of the massive object at the center of the Milky Way galaxy is 3.44\times10^{37}\ Kg

Explanation:

Given that,

Diameter = 10 light year

Orbital speed = 180 km/s

Suppose determine the mass of the massive object at the center of the Milky Way galaxy.

Take the distance of one light year to be 9.461×10¹⁵ m. I was able to get this it is 4.26×10³⁷ kg.

We need to calculate the radius of the orbit

Using formula of radius

r=\dfrac{d}{2}

r=\dfrac{15\times9.461\times10^{15}}{2}

r=7.09\times10^{16}\ m

We need to calculate the mass of the massive object at the center of the Milky Way galaxy

Using formula of mass

M=\dfrac{v^2r}{G}

Put the value into the formula

M=\dfrac{(180\times10^3)^2\times7.09\times10^{16}}{6.67\times10^{-11}}

M=3.44\times10^{37}\ Kg

Hence, The mass of the massive object at the center of the Milky Way galaxy is 3.44\times10^{37}\ Kg

5 0
3 years ago
A brick of mass 5 kg is released from rest at a height of 3 m. How fast is it going when it hits the ground? Acceleration due to
sineoko [7]

Taking into account the definition of kinetic, potencial and mechanical energy, when the brick hits the ground, it has a speed of 7,668 m/s.

<h3>Kinetic energy</h3>

Kinetic energy is a form of energy. It is defined as the energy associated with bodies that are in motion and this energy depends on the mass and speed of the body.

Kinetic energy is defined as the amount of work necessary to accelerate a body of a given mass and at rest, until it reaches a given speed. Once this point is reached, the amount of accumulated kinetic energy will remain the same unless there is a change in speed or the body returns to its state of rest by applying a force.

The kinetic energy is represented by the following expression:

Ec= ½ mv²

Where:

  • Ec is the kinetic energy, which is measured in Joules (J).
  • m is the mass measured in kilograms (kg).
  • v is the speed measured in meters over seconds (m/s).

<h3>Potential energy</h3>

On the other hand, potential energy is the energy that measures the ability of a system to perform work based on its position. In other words, this is the energy that a body has at a certain height above the ground.

Gravitational potential energy is the energy associated with the gravitational force. This will depend on the relative height of an object to some reference point, the mass, and the force of gravity.

So for an object with mass m, at height h, the expression applied to the gravitational energy of the object is:

Ep= m×g×h

Where:

  • Ep is the potential energy in joules (J).
  • m is the mass in kilograms (kg).
  • h is the height in meters (m).
  • g is the acceleration of fall in m/s².
<h3>Mechanical energy</h3>

Finally, mechanical energy is that which a body or a system obtains as a result of the speed of its movement or its specific position, and which is capable of producing mechanical work. Then:

Potential energy + kinetic energy = total mechanical energy

<h3>Principle of conservation of mechanical energy </h3>

The principle of conservation of mechanical energy indicates that the mechanical energy of a body remains constant when all the forces acting on it are conservative (a force is conservative when the work it does on a body depends only on the initial and final points and not the path taken to get from one to the other.)

Therefore, if the potential energy decreases, the kinetic energy will increase. In the same way, if the kinetics decreases, the potential energy will increase.

<h3>This case</h3>

A brick of mass 5 kg is released from rest at a height of 3 m. Then, at this height, the brick of mass has no speed, so the kinetic energy has a value of zero because it depends on the speed or moving bodies. But the potential energy is calculated as:

Ep= 5 kg× 9.8 \frac{m}{s^{2} }× 3 m

Solving:

<u><em>Ep= 147 J</em></u>

So, the mechanical energy is calculated as:

Potential energy + kinetic energy = total mechanical energy

147 J +  0 J= total mechanical energy

147 J= total mechanical energy

The principle of conservation of mechanical energy  can be applied in this case. Then, when the brick hits the ground, the mechanical energy is 147 J. In this case, considering that the height is 0 m, the potential energy is zero because this energy depends on the relative height of the object. But the object has speed, so it will have kinetic energy. Then:

Potential energy + kinetic energy = total mechanical energy

0 J +  kinetic energy= 147 J

kinetic energy= 147 J

Considering the definition of kinetic energy:

½  5 kg×v²= 147 J

v=\sqrt{\frac{2x147 J}{5 kg} }

v=7.668 m/s

Finally, when the brick hits the ground, it has a speed of 7,668 m/s.

Learn more about mechanical energy:

brainly.com/question/17809741

brainly.com/question/14567080

brainly.com/question/12784057

brainly.com/question/10188030

brainly.com/question/11962904

#SPJ1

6 0
2 years ago
If the second harmonic of a certain string is 42 Hz, what is the fundamental frequency of the string?
sdas [7]
Data:
f_{2} = 42 Hz
n (Wave node)
V (Wave belly) 
L (Wave length)
<span>The number of bells is equal to the number of the harmonic emitted by the string.
</span>
f_{n} =  \frac{nV}{2L}

Wire 2 → 2º Harmonic → n = 2

f_{n} = \frac{nV}{2L}
f_{2} = \frac{2V}{2L} &#10;
2V =  f_{2} *2L
V =  \frac{ f_{2}*2L }{2}
V =  \frac{42*2L}{2}
V =  \frac{84L}{2}
V = 42L

Wire 1 → 1º Harmonic or Fundamental rope → n = 1


f_{n} = \frac{nV}{2L}
f_{1} = \frac{1V}{2L}
f_{1} =  \frac{V}{2L}

If, We have:
V = 42L
Soon:
f_{1} = \frac{V}{2L}
f_{1} = \frac{42L}{2L}
\boxed{f_{1} = 21 Hz}

Answer:

<span>The fundamental frequency of the string:
</span>21 Hz

7 0
3 years ago
Read 2 more answers
A frequency generator sends a 550Hz sound wave through both water and ice. What is the difference in wavelength between the wave
LUCKY_DIMON [66]

Answer:

3.1

Explanation:

use formula f = v/lambda

7 0
3 years ago
Assume that the polymer material has a constant refractive index of 1.5. For light of 600nm wavelength at normal incidence, what
yaroslaw [1]

Answer:

Minimum thickness will be 100 nm

Explanation:

We have given refractive index is n = 1.5

Wavelength of the light incidence \lambda= 600 nm

We have to find the smallest thickness of the film so that there will be minimum light reflect

For minimum thickness of non reflecting film

t=\frac{\lambda }{4n} , here t is thickness, \lambda is wavelength and n is refractive index

Putting all values t=\frac{600}{4\times 1.5}=100nm

So minimum thickness will be 100 nm

8 0
3 years ago
Other questions:
  • If the plane of the moon's orbit were the same as the ecliptic plane, there would be a lunar eclipse
    13·1 answer
  • Imagine two billiard balls on a pool table. Ball A has a mass of 2 kilograms and ball
    14·2 answers
  • What is the speed of a proton after being accelerated from rest through a 5.7×107 v potential difference? express your answer us
    15·1 answer
  • A flat square plate of side 20cm moves over other similar plate with a thin layer of 0.4cm of a liquid between them with force 1
    15·1 answer
  • _____cells do not contain a nucleus
    6·1 answer
  • PART ONE
    7·1 answer
  • When a pendulum with a period of 2.00000 s is moved to a new location from one where the acceleration due to gravity was 9.80 m/
    5·1 answer
  • a 3 kg piece of putty that is moving with a velocity of 10 m/s collides and sticks to an 8 kg bowling ball that was at rest. wha
    6·1 answer
  • Make the following conversion.<br><br> 50.5 cm = _____ hm
    5·2 answers
  • The average reaction time is 1.5 seconds?<br><br> True<br> False
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!