<span>Acceleration of a passenger is centripetal acceleration, since the Ferris wheel is assumed at uniform speed:
a = omega^2*r
omega and r in terms of given data:
omega = 2*Pi/T
r = d/2
Thus:
a = 2*Pi^2*d/T^2
What forces cause this acceleration for the passenger, at either top or bottom?
At top (acceleration is downward):
Weight (m*g): downward
Normal force (Ntop): upward
Thus Newton's 2nd law reads:
m*g - Ntop = m*a
At top (acceleration is upward):
Weight (m*g): downward
Normal force (Nbottom): upward
Thus Newton's 2nd law reads:
Nbottom - m*g = m*a
Solve for normal forces in both cases. Normal force is apparent weight, the weight that the passenger thinks is her weight when measuring by any method in the gondola reference frame:
Ntop = m*(g - a)
Nbottom = m*(g + a)
Substitute a:
Ntop = m*(g - 2*Pi^2*d/T^2)
Nbottom = m*(g + 2*Pi^2*d/T^2)
We are interested in the ratio of weight (gondola reference frame weight to weight when on the ground):
Ntop/(m*g) = m*(g - 2*Pi^2*d/T^2)/(m*g)
Nbottom/(m*g) = m*(g + 2*Pi^2*d/T^2)/(m*g)
Simplify:
Ntop/(m*g) = 1 - 2*Pi^2*d/(g*T^2)
Nbottom/(m*g) = 1 + 2*Pi^2*d/(g*T^2)
Data:
d:=22 m; T:=12.5 sec; g:=9.8 N/kg;
Results:
Ntop/(m*g) = 71.64%...she feels "light"
Nbottom/(m*g) = 128.4%...she feels "heavy"</span>
Answer:
y = -14/3x + 43/3
Step-by-step explanation:
y2 - y1 / x2 - x1
5 - (-9) / 2 - 5
14 / -3
- 14/3
y = -14/3x + b
5 = -14/3(2) + b
5 = -28/3 + b
43/3 = b
y = -14/3x + 43/3
Answer:
36 cups of Chex total.
Step-by-step explanation:
Well, he will obviously be using 12 cups of pretzels, so let's set that aside. For every cup of pretzels, there are 3 cups of chex. So, multiply 3x12. That will give you how much chex you will need.
Answer:
Step-by-step explanation:
here you go mate
step 1
-10+7m= -10 equation
step 2
7m-10+10=-10+10
7m=0
step 3
divide
answer
m=0
mind if i get brainliest?
Answer:
1/4
Step-by-step explanation:
The orange shape is 3 units tall and 4 units wide. The black shape is 12 units tall and 16 units wide. The scale factor is ...
orange/black = 3/12 = 4/16 = 1/4
<h2 />