Answer:
They combine if they have the same units
Explanation:
I am not quite sure what you mean by this question. I will try my best to answer this.
Velocities combine only if they both have the same units. The linear velocities have the unit meters per second. For example, a linear velocity and an angular velocity cannot combine together because angular velocity has a unit of radians per second.
A, 2 molcules
H2O is one molecule, it has 3 atoms (two hydrogen and one oxygen)
2 H2O are two water molecules
It is also likely (but not certain) that the photons will be absorbed by atoms. ... Light particles( or photons) never”run out” or loose their energy, so they can go an infinite distance, or until it reaches an object, that reflects the light or obsorbs it. Ie, a planet, or a mirror.
Answer:
d²x/dt² = - 4dx/dt - 4x is the required differential equation.
Explanation:
Since the spring force F = kx where k is the spring constant and x its extension = 2.45 equals the weight of the 4 kg mass,
F = mg
kx = mg
k = mg/x
= 4 kg × 9.8 m/s²/2.45 m
= 39.2 kgm/s²/2.45 m
= 16 N/m
Now the drag force f = 16v where v is the velocity of the mass.
We now write an equation of motion for the forces on the mass. So,
F + f = ma (since both the drag force and spring force are in the same direction)where a = the acceleration of the mass
-kx - 16v = 4a
-16x - 16v = 4a
16x + 16v = -4a
4x + 4v = -a where v = dx/dt and a = d²x/dt²
4x + 4dx/dt = -d²x/dt²
d²x/dt² = - 4dx/dt - 4x which is the required differential equation
Given:
m = 555 g, the mass of water in the calorimeter
ΔT = 39.5 - 20.5 = 19 °C, temperature change
c = 4.18 J/(°C-g), specific heat of water
Assume that all generated heat goes into heating the water.
Then the energy released is
Q = mcΔT
= (555 g)*(4.18 J/(°C-g)*(19 °C)
= 44,078.1 J
= 44,100 J (approximately)
Answer: 44,100 J