The maximum acceleration the truck can have so that the refrigerator does not tip over is 4.15 m/s².
<h3>What will be the maximum acceleration of the truck to avoid tipping over?</h3>
The maximum acceleration is obtained by taking clockwise moments about the tipping point of rotation.
Clockwise moment = Anticlockwise moment
Ft * 1.58 m = F * 0.67 m
where
- Ft is tipping force = mass * acceleration, a
- F is weight = mass * acceleration due to gravity, g
m * a * 1.58 = m * 9.81 * 0.67
a = 4.15 m/s²
The maximum acceleration the truck can have so that the refrigerator does not tip over is 4.15 m/s².
In conclusion, the acceleration of the truck is found by taking moments about the tipping point.
Learn more about moments of forces at: brainly.com/question/27282169
#SPJ1
According to the law of conservation of momentum:
m1 = mass of first object
m2 = mass of second object
v1 = Velocity of the first object before the collision
v2 = Velocity of the second object before the collision
v'1 = Velocity of the first object after the collision
v'2 = Velocity of the second object after the collision
Now how do you solve for the velocity of the second car after the collision? First thing you do is get your given and fill in what you know in the equation and solve for what you do not know.
m1 = 125 kg v1 = 12m/s v'1 = -12.5m/s
m2 = 235kg v2 = -13m/s v'2 = ?
Transpose everything on the side of the unknown to isolate the unknown. Do not forget to do the opposite operation.
The velocity of the 2nd car after the collision is
0.03m/s.
Answer: 0.01 m
Explanation: The formulae for capillarity rise or fall is given below as
h = (2T×cosθ)/rpg
Where θ = angle mercury made with glass = 50°
T = surface tension = 0.51 N/m
g = acceleration due gravity = 9.8 m/s²
r = radius of tube = 0.5mm = 0.0005m
p = density of mercury.
h = height of rise or fall
From the question, specific gravity of density = 13.3
Where specific gravity = density of mercury/ density of water, where density of water = 1000 kg/m³
Hence density of mercury = 13.3×1000 = 13,300 kg/m³.
By substituting parameters, we have that
h = 2×0.51×cos 50/0.0005×9.8×13,300
h = 0.6556/65.17
h = 0.01 m
More mass and less difference
Answer:
Sample Response: In a vacuum, there are no atoms or particles that interfere with the path of light. However, in other media, the speed of light is lower than 3.0 × 108 m/s because the wave is continuously absorbed and re-emitted by each atom in its path. The differences in speed are due to the composition of the medium and the density of the particles in the medium.
Explanation: