Answer:
The ball stops instantaneously at the topmost point of the motion.
Explanation:
Assume we have thrown a ball up in the air. For that we have given a force on the ball and it acquires an initial velocity in the upward direction.
The forces that resist the motion of the ball in the upward direction are the force of gravity and air resistance. The ball will instantaneously come to rest when the velocity of the ball reduces to zero.
The two forces acting in the downward direction reduces its speed continuously and it becomes zero at the topmost point.
A theorem can be proven (from axioms or prior theorems), using logic.
A hypothesis can be supported by evidence. The more evidence in support of the hypothesis, the more likely the hypothesis is to be correct. However, you’re always at the mercy of contrary evidence appearing in the future, to reduce the likelihood or even invalidate a hypothesis.
A (mathematical) proof suffers no such vulnerability to future evidence, as long as you hold the axioms of the theory to be true, and as long as there was no flaw in the construction of the proof.
Answer:

Explanation:
<u>Average Acceleration
</u>
Acceleration is a physical magnitude defined as the change of velocity over time. When we have experimental data, we can compute it by calculating the slope of the line in velocity vs time graph.
Note: <em>We cannot see if the time axis is numbered in increments of 1 second, and we'll assume that.
</em>
When
, the graph shows a value of
When
, the object is at rest, 
We compute the average acceleration as




Answer:
437500Joules
Explanation:
Kinetic energy=1/2mvsquare
1/2 x 1400 x 25 x25
kinetic energy= 437500Joules
Answer:
the last one
Explanation:
Because it is a magnifying glass, it magnifies the object and makes it bigger than it appears