Answer:
She must stop the car before interception, distance traveled 12.66 m
Explanation:
We will take all units to the SI system
Vo = 48Km / h (1000m / 1Km) (1h / 3600s) = 13.33 m / s
V2 = 70 Km / h = 19.44 m / s
We calculate the distance traveled before stopping
X = Vo t + ½ to t²
Time is what it takes traffic light to turn red is t = 2.0 s
X = 13.33 2 + 1.2 (-7) 2²
X = 12.66 m
It stops car before reaching the traffic light turning to red
Let's analyze what happens if you accelerate, let's calculate the acceleration of the vehicle
V2 = Vo + a t2
a = (V2-Vo) / t2
a = (19.44-13.33) /6.6
a = 0.926 m / s2
This is the acceleration to try to pass the interception, now let's calculate the distance it travels in the time the traffic light changes from yellow to red (t = 2.0 s)
X = Vo t + ½ to t²
X = 13.33 2 + ½ 0.926 2²
X = 28.58 m
Since the vehicle was 30 m away, the interception does not happen
Answer:
No, there won't be a collision.
Explanation:
We will use the constant acceleration formulas to calculate,
v = u + a*t
0 = 25 + (-0.1)*t
t = 250 seconds (the time taken for the passenger train to stop)
v^2 = u^2 + 2*a*s
0 = (25)^2 + 2*(-0.1)*s
s = 3125 m (distance traveled by passenger train to stop)
If the distance traveled by freight train in 250 seconds is less than (3125-200=2925 m) than the collision will occur
Speed*time = distance
Distance = (15)*(250)
Distance = 3750 m
As the distance is way more, there won’t be a collision
Acceleration is the rate at which an object changes its velocity. It defines how much the velocity is changing. The acceleration can be negative and positive. Negative acceleration is when the object slows down, while positive while the object goes faster.
<span>A ball moving at a constant speed around a circular track produces acceleration. </span>
The answer is Convoluted endoplasmic reticulum