Answer:
The measured redshift is z =2
Explanation:
Since the object is traveling near light speed, since v/c = 0.8, then we have to use a redshift formula for relativistic speeds.
Finding the redshift.
We can prepare the formula by dividing by lightspeed inside the square root to both numerator and denominator to get
Replacing the given information
Thus the measured redshift is z = 2.
A. lunar phases result from the changing lunar mass. Let me know if this helped.
5.4*10^-19 C
Explanation:
For the purposes of this question, charges essentially come in packages that are the size of an electron (or proton since they have the same magnitude of charge). The charge on an electron is -1.6*10^-19
Therefore, any object should have a charge that is a multiple of the charge of an electron - It would not make sense to have a charge equivalent to 1.5 electrons since you can't exactly split the electron in half. So the charge of any integer number of electrons can be transferred to another object.
Charge = q(electron)*n(#electrons)
Since 5.4/1.6 = 3.375, we know that it can not be the right answer because the answer is not an integer.
If you divide every other option listed by the charge of an electron, you will get an integer number.
(16*10^-19 C)/(1.6*10^-19C) = 10
(-6.4*10^-19 C)/(1.6*10^-19C) = -4
(4.8*10^-19 C)/(1.6*10^-19C) = 3
(5.4*10^-19 C)/(1.6*10^-19C) = 3.375
(3.2*10^-19C)/(1.6*10^-19C) = 2
etc.
I hope this helps!
Assemblage is an additive process where artists construct work by putting together objects and attaches them in some way. The correct option among all the options that are given in the question is the second option or option "b". This kind of artistry actually gives a three dimensional impression to the work that is done by the artist.