Point A has the largest magnitude of acceleration as compared to other points on the position verses time graph.
On the graph, A is the point where magnitude of the acceleration of the particle is greatest as compared to other positions on the graph because the height of point A is the largest as compared to other points of the graph.
The graph shows at which point acceleration of an object is higher and lower so we can conclude that point A has the largest magnitude of acceleration as compared to other points on the position verses time graph.
Learn more about acceleration here: brainly.com/question/933224
Learn more: brainly.com/question/25887663
Since momentum is a vector quantity, take any direction as positive and other as negative. Answer won't change.
In order to accelerate the dragster at a speed

, its engine must do a work equal to the increase in kinetic energy of the dragster. Since it starts from rest, the initial kinetic energy is zero, so the work done by the engine to accelerate the dragster to 100 m/s is

however, we must take into account also the fact that there is a frictional force doing work against the dragster, and the work done by the frictional force is:

and the sign is negative because the frictional force acts against the direction of motion of the dragster.
This means that the total work done by the dragster engine is equal to the work done to accelerate the dragster plus the energy lost because of the frictional force, which is

:

So, the power delivered by the engine is the total work divided by the time, t=7.30 s:

And since 1 horsepower is equal to 746 W, we can rewrite the power as
It is known as silicon dioxide or silica!
Hope this helps!
<h3>
Answer:</h3>
35 meters
<h3>
Explanation:</h3>
<u>Data given;</u>
- Velocity of an object = 5 m/s
- Time taken = 7 s
We are required to calculate how far the object traveled.
Velocity = Displacement ÷ time
Displacement = Velocity × time
= 5 m/s × 7 s
= 35 m
Therefore; the object traveled 35 meters