Answer:
The force is 
Explanation:
The diagram for this question is shown on the first uploaded image
From the question we are told that
The weight of the gate is 
The vertical component of F is 
From the diagram , taking moment about the pivot we have

Where
is the weight of the gate evaluated as

=> 
=> 
=> 
Answer:
a)-1.014x
J
b)3.296 x
J
Explanation:
For Sphere A:
mass 'Ma'= 47kg
xa= 0
For sphere B:
mass 'Mb'= 110kg
xb=3.4m
a)the gravitational potential energy is given by
= -GMaMb/ d
= - 6.67 x
x 47 x 110/ 3.4 => -1.014x
J
b) at d= 0.8m (3.4-2.6) and
=-1.014x
J
The sum of potential and kinetic energies must be conserved as the energy is conserved.
+
=
+ 
As sphere starts from rest and sphere A is fixed at its place, therefore
is zero
=
+ 
The final potential energy is
= - GMaMb/d
Solving for '
'
=
+ GMaMb/d => -1.014x
+ 6.67 x
x 47 x 110/ 0.8
= 3.296 x
J
Answer:
energy which a body possesses by virtue of being in motion.
Explanation:
Answer:
10. 36 g ZnCl2
Explanation:
Zn + 2HCl -> ZnCl2 + H2
0.076 mol Zn
1.37 mol HCl
3 mol H2
Limiting reactant: Zn
1 mol Zn -> 1 mol ZnCl2
0.076 mol Zn ->x x= 0.076 mol ZnCl2=10.36 g
The solution to the problem is as follows:
<span>First, I'd convert 188 mi/hr to ft/s. You should end up with about ~275.7 ft/s.
So now write down all the values you know:
Vfinal = 275.7 ft/s
Vinitial = 0 ft/s
distance = 299ft
</span>
<span>Now just plug in Vf, Vi and d to solve
</span>
<span>Vf^2 = Vi^2 + 2 a d
</span><span>BTW: That will give you the acceleration in ft/s^2. You can convert that to "g"s by dividing it by 32 since 1 g is 32 ft/s^2.</span>