The relationship between current and voltage and resistance is described by ohlm's law. This equation i=v/r tells that the current i flowing through a circuit is directly proportional to the voltage v, and inversely proportional to resistance r. This desceibes the relationship of voltage, current and resistance.
The large leaves help it survive as they serve as the<u> organ for photosynthesis.</u>
Explanation:
- Photosynthesis, the process by which green plants and certain other organisms transform light energy into chemical energy.
- During photosynthesis in green plants, light energy is captured and used to convert water, carbon dioxide, and minerals into oxygen and energy-rich organic compounds
- Leaves provide food and air to help a plant stay healthy and grow. Through photosynthesis, leaves turn light energy into food.
- Through pores, or stomata, leaves breathe in carbon dioxide and breathe out oxygen. Leaves also release excess water.
- Most leaves are broad and so have a large surface area allowing them to absorb more light
- A thin shape means a short distance for carbon dioxide to diffuse in and oxygen to diffuse out easily.
- The exchange of oxygen and carbon dioxide in the leaf occurs through pores called stomata.
- Normally stomata open when the light strikes the leaf in the morning and close during the night.
Potential if it is off or kinetic energy when its on
<em><u>One</u></em>
Givens
- delta B = 0.20 T/s
- A = 0.07 m^2
- R = 3.5 ohms
Formula
Φ = ΔB*A
e = Φ
Solution (first part)
e = 0.2 * 0.07
e = 0.014 emf
Solution (second part)
i = e/R
i = 0.014 / 3.5
i = 4 * 10^-3
i = 4 ma
Answer
A
<em><u>Two</u></em>
Givens
N = 200 turns
Φ = 30 degrees
Delta B = 0.45 T/s
phi = 30 degrees
r = 0.06 meters
Formula
e = -N * delta B * A * Cos(phi)
Solution
e = -200 * 0.45 (pi r^2) * Cos(30)
e = - 200 * 0.45 * (3.14 * 0.06^2) * cos(30)
e = 0.881 emf
Answer
A
Explanation:
acceleration equation is change in velocity/time
so 100/3 will be 33.3km