Well I think B hope this helps
Medicine to a patient. That should be calculated based on weight, strength/dosage and possibly other factors
The velocity with which the jumper leaves the floor is 5.1 m/s.
<h3>
What is the initial velocity of the jumper?</h3>
The initial velocity of the jumper or the velocity with which the jumper leaves the floor is calculated by applying the principle of conservation of energy as shown below.
Kinetic energy of the jumper at the floor = Potential energy of the jumper at the maximum height
¹/₂mv² = mgh
v² = 2gh
v = √2gh
where;
- v is the initial velocity of the jumper on the floor
- h is the maximum height reached by the jumper
- g is acceleration due to gravity
v = √(2 x 9.8 x 1.3)
v = 5.1 m/s
Learn more about initial velocity here: brainly.com/question/19365526
#SPJ1
Answer:
Explanation:
a ) Slit separation d = .1 x 10⁻³ m
Screen distance D = 4 m
wave length of light λ = 650 x 10⁻⁹ m
Width of central fringe = λ D / d
= 
= 26 mm
b ) Distance between 1 st and 2 nd bright fringe will be equal to width of dark fringe which will also be equal to 26 mm
c ) Angular separation between the central maximum and 1 st order maximum will be equal to angular width of fringe which is equal to
λ / d
= 
= 6.5 x 10⁻³ radian.
Answer:
-4.0 N
Explanation:
Since the force of friction is the only force acting on the box, according to Newton's second law its magnitude must be equal to the product between mass (m) and acceleration (a):
(1)
We can find the mass of the box from its weight: in fact, since the weight is W = 50.0 N, its mass will be

And we can fidn the acceleration by using the formula:

where
v = 0 is the final velocity
u = 1.75 m/s is the initial velocity
t = 2.25 s is the time the box needs to stop
Substituting, we find

(the acceleration is negative since it is opposite to the motion, so it is a deceleration)
Therefore, substituting into eq.(1) we find the force of friction:

Where the negative sign means the direction of the force is opposite to the motion of the box.