1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Temka [501]
3 years ago
7

Factor 6x4 – 5x2 + 12x2 – 10 by grouping. What is the resulting expression?

Mathematics
2 answers:
lisov135 [29]3 years ago
7 0
Your answer would be the last option, (6x² - 5)(x² + 2).
This is because when you expand it, you get:
6x² × x² = 6x⁴
6x² × 2 = 12x²
-5 × x² = -5x²
-5 × 2 = -10
Which are all the correct terms.

I hope this helps!
aev [14]3 years ago
7 0
1. Factor out common terms in the first two terms, then in the last two terms
x^2(6x^2-5)+2(6x^2-5)

2. Facto out the common term 6x^2-5
(6x^2-5)(x^2+2)

Have a nice day :D
You might be interested in
To make punch, Sophia mixes 2 liters of clear soda with 70 centiliters of cranberry juice and 236 milliliters of pineapple juice
mihalych1998 [28]
2.936 liters of punch...or 2,936 milliliters...or 293.6 centiliters.
6 0
3 years ago
Read 2 more answers
RESPONDE LAS PREGUNTAS 8, 9 Y 10 DE ACUERDO CON LA
andrew-mc [135]

Answer:  

ANSWER QUESTIONS 8, 9 AND 10 ACCORDING TO THE

NEXT INFORMATION

Luis painted a mural that

has 760 cm of

perimeter; your measurements are

show in the following

figure.

8. The expression associated with the length of the mural: 2x - 40, is

can interpret as

A. the length is 40 cm less than twice its width

B. the length exceeds the width value by 40 cm

C. the width squared, minus 40 cm, equals the length

D. 40 cm minus twice the width is the value of the length

9. What are the measurements in centimeters of the mural?

A. length: 150, width: 190 B. length: 210, width: 250

B. length: 210, width: 250

C. length: 240, width: 140 D. length: 230, width: 190

D. length: 230, width: 190

10. The area Luis used to paint the mural is

A. 2 [(2x - 40) + x] B. 2x2 - 40x

B. 2x2 - 40x

C. (2x) x - 40 D. x2 - 40x

D. x2 - 40x

Step-by-step explanation:

6 0
3 years ago
Reuben has scores of 70,75,83, and 80 on four spanish quizzes. what score must he get on the next quiz to achieve an average of
Sergio [31]
X - the score he must get

\frac{70+75+83+80+x}{5} \geq 80 \\
\frac{308+x}{5} \geq 80 \\
308+x \geq 400 \\
x \geq 92

He must get at least 92 points.
4 0
3 years ago
Read 2 more answers
Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​
Kitty [74]

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

4 0
3 years ago
Write a rule for the nth term of the arithmetic sequence. Then graph the first six terms of the sequence. a6=-12 a12=-36
denis-greek [22]

Answer:

We need to find the first term.  We can use the formula

an = a1 + d(n - 1)

to solve for a1.  We already know the 12th term, a12, common difference, d, and nth sequence, n.

a12 = -36

d = -4

n = 12

-36 = a1 - 4(12 - 1)

-36 = a1 - 44

8 = a1

The first term is 8.  Therefore, your formula is

an = 8 - 4(n - 1)

an = -4n + 12

Then use this formula to graph.

n is the independent variable.

an is the dependent variable.

Your graph will be a line.

n    |       an

___________

1          8

2          4

3          0

4         -4

5         -8

6         -12

Step-by-step explanation:

give me brainliest.

3 0
3 years ago
Other questions:
  • Twice a number m minus three equals the sum of m and five
    7·1 answer
  • Factor: 4b^3 - 12b^2 - 9b + 27
    14·2 answers
  • Bella spent 2.75 after paying a 10% tip what was the orginal price
    8·2 answers
  • Given the height,h, and the volume v of a certain cylinder. Alex uses the formula
    9·1 answer
  • What is the value of y?
    15·1 answer
  • Which of these equations of a line is
    11·1 answer
  • Match the number of significant figures to the value or problem.
    15·1 answer
  • What is the equation of the line that passes through the point (6, -6) and has a slope of -5/3?​
    13·1 answer
  • Work out the size of angle A 11cm 9cm 38°​
    8·1 answer
  • 2hm 3dam to into meter
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!