1.5x7 = 10.5 cups per week
I don't know how to convert it. probably a decimal or fraction.
here's how to convert, 10.5/16 = # gallon(s)
Answer: 13 is c im pretty sure and 14 is a im think hope fully it helps
Step-by-step explanation:
We reject our null hypothesis, H₀, at a level of significance of =0.01 since the P-value is less than that threshold. There is compelling statistical data to indicate that since 1991, the proportion of drivers who love driving has decreased.
Given,
The Pew Research Center recently polled n=1048 U.S. drivers and found that 69% enjoyed driving their automobiles.
In 1991, a Gallup poll reported this percentage to be 79%. using the data from this poll, test the claim that the percentage of drivers who enjoy driving their cars has declined since 1991.
To report the large-sample z statistic and its p-value,
Null hypothesis,
H₀ : p = 0.79
Alternative hypothesis,
Ha : p < 0.79
Level of significance, α = 0.01
Under H₀
Test statistic,

Z₀ = -7.948
The alternative hypothesis(Ha) is left-tailed, so the P-value of the test is given by
P-value = P(z <-7.945)
= 0.000 (from z-table)
Since the P-value is smaller than given level of significance, α=0.01 we reject our null hypothesis, H₀, at α=0.0.1 level Strong statistical evidence to conclude that the percentage of drivers who enjoy driving their cars has declined since 1991.
To learn more about hypothesis click here:
brainly.com/question/17173491
#SPJ4
(4 hundred + 0 tens + 5 ones) + (1 ten) = 4 hundred + 1 ten + 5 ones
... = 415
Answer:
The true statement about Kendra's sample is:
b) Kendra's samples are precise but not accurate.
Step-by-step explanation:
a) Data and Calculations:
Average age of dogs currently alive = 4.8 years
Average ages of dogs in Kendra's sample
Week Average Age (in years)
1 3.7
2 3.8
3 4.2
4 4.1
5 3.9
6 3.9
7 4.0
Total 27.6
Mean = 3.9 (27.6/7)
b) Accuracy refers to how close Kendra's sample mean age of dogs is to the average age value as stated in the Modern Dog Magazine. While the Magazine stated an average age of 4.8 years, Kendra's sample produced a mean of 3.9 years. On the other hand, precision refers to how close Kendra's sample measurements are to each other. With a mean of 3.9 years, the sample measurements are very close to each other. Therefore, we can conclude that "Kendra's samples are precise but not accurate."