Answer: To know whether a radical expression is in simplest form or not you should put the numbers and letters inside the radical in terms of prime factors. Then, the radical expression is in the simplest form if all the numbers and letters inside the radical are prime factors with a power less than the index of the radical
Explanation:
Any prime factor raised to a power greater than the index of the root can be simplified and any factor raised to a power less than the index of the root cannot be simplified
For example simplify the following radical in its simplest form:
![\sqrt[5]{3645 a^8b^7c^3}](https://tex.z-dn.net/?f=%20%5Csqrt%5B5%5D%7B3645%20a%5E8b%5E7c%5E3%7D%20)
1) Factor 3645 in its prime factors: 3645 = 3^6 * 5
2) Since the powr of 3 is 6, and 6 can be divided by the index of the root, 5, you can simplify in this way:
- 6 ÷ 5 = 1 with reminder 1, so 3^1 leaves the radical and 3^1 stays in the radical
3) since the factor 5 has power 1 it can not leave the radical
4) the power of a is 8, then:
8 ÷ 5 = 1 with reminder 3 => a^1 leaves the radical and a^3 stays inside the radical.
5) the power of b is 7, then:
7 ÷ 5 = 1 with reminder 2 => b^1 leaves the radical and b^2 stays inside the radical
6) the power of c is 3. Since 3 is less than 5 (the index of the radical) c^3 stays inside the radical.
7) the expression simplified to its simplest form is
![3ab \sqrt[5]{3.5.a^3b^2c^3}](https://tex.z-dn.net/?f=3ab%20%5Csqrt%5B5%5D%7B3.5.a%5E3b%5E2c%5E3%7D%20)
And you know
it cannot be further simplified because all the numbers and letters inside the radical are prime factors with a power less than the index of the radical.
19+17+4+4=44
56-44=12
20-12=8
No, and she needs 8 more dollars.
Answer:
For the triangle, the area is 7.5 in.
For the trapezoid, the area should be 90 cm
Step-by-step explanation:
The formula for a triangle is A=1/2bh and for a trapezoid it is (a+b)/2×h
Answer: a=4, b=-8, c=-3
Step-by-step explanation: This equation isn't in standard form. To get it there, subtract -3 from both sides. This gets you an equation of 4x^2-8x-3.
The standard form is ax^2+bx+c.
A is the number before x^2 (4). B is the number before x, and since it's subtracted it's negative (-8). C is the last number, and since it's subtracted it's negative (-3).
Answer:
Solution : Parabola
Step-by-step explanation:
As you can see only one variable is square in this situation, so it can only be a parabola. We can prove that it is a parabola however by converting it into standard form (x - h)^2 + (y - k)^2.

Respectively it's properties would be as follows,
