To explain how transverse and longitudinal waves work, let us give two examples for each particular case.
In the case of transverse waves, the displacement of the medium is PERPENDICULAR to the direction of the wave. One way to visualize this effect is when you have a rope and between two people the rope is shaken horizontally. The shift is done from top to bottom. This phenomenon is common to see it in solids but rarely in liquids and gases. A common application usually occurs in electromagnetic radiation.
On the other hand in the longitudinal waves the displacement of the medium is PARALLEL to the direction of propagation of the wave. A clear example of this phenomenon is when a Slinky is pushed along a table where each of the rings will also move. From practice, sound waves enclose the definition of longitudinal wave displacement.
Therefore the correct answer is:
C. In transverse waves the displacement is perpendicular to the direction of propagation of the wave, while in longitudinal waves the displacement is parallel to the direction of propagation.
All elements are balanced. There are 1 Mg, 1 O, 2 Li's and 2 Cl's.
The options are missing and they are;
A) the electric force increases because the balloon loses its charge.
B) the electric force increases because the distance increases.
C) the electric force decreases because the distance increases.
D) the electric force decreases because his hair loses its charge.
Answer:
Correct answer is option C - the electric force decreases because the distance increases.
Explanation:
The formula for electric force is;
F = k•q1•q2/r²
Where;
K is coulombs constant
q1 and q2 are particle charges
r is distance
So,looking at the formula given earlier, if we increase the distance, the denominator will increase and thus the Force will decrease.
So the correct option is option C
Answer:
the answers should be B and D
Answer:
Iron is a element
Explanation:
a substance that cannot be broken down into simpler substances by chemical means, and is characterized by its atomic number, , which represents the number of positively charged particles within that element's nucleus