Answer:
Normal, Gravity, Friction, and Air Resistance.
Explanation:
When a moving car skid to stop and its wheels are locked across, then the following forces will be applied on the car:
<u>Normal force:</u> It will act counter to gravity that pushes an object against a surface and acts perpendicular to the contact surface.
<u>Gravity:</u> Gravity force acts in each and every object having mass and it can not be avoidable. So, the gravity force will also apply to the car and attract it to the earth's surface.
<u>Friction: </u>Friction is a force that acts opposite to the motion and stops or slows motion. Friction will be applied to the car that will oppose the motion of the car and stop it.
<u>Air resistance:</u> air resistance is defined as the forces exerted by air that acts opposite to the relative motion of an object. Air resistance will also be applied to the car when it will skid to stop as we are always surrounded by the air.
Hence, the correct answers are "Normal, Gravity, Friction, and Air Resistance."
Answer:
Radio waves
Explanation:
The electromagnetic spectrum includes all different types of waves, which are usually classified depending on their frequency. Ordering them from the highest frequency to the lowest frequency, they are:
- Gamma rays
- X-rays
- Ultraviolet
- Visible light
- Infrared radiation
- Microwaves
- Radio waves
Radio waves are the electromagnetic waves with lowest frequency, their frequency is lower than 300 GHz (
) and therefore they are the electromagnetic waves with lowest energy (in fact, the energy of an electromagnetic wave is proportional to its frequency). They are generally used for radio and telecommunications since this type of waves can travel up to long distances.
Answer:
3.6ft
Explanation:
Using= 2*π*sqrt(L/32)
To solve for L, first move 2*n over:
T/(2*π) = sqrt(L/32)
Next,eliminate the square root by squaring both sides
(T/(2*π))2 = L/32
or
T2/(4π2) = L/32
Lastly, multiply both sides by 32 to yield:
32T2/(4π2) = L
and simplify:
8T²/π²= L
Hence, L(T) = 8T²/π²
But T = 2.1
Pi= 3.14
8(2.1)²/3.14²
35.28/9.85
= 3.6feet
Answer:
The speed of the large cart after collision is 0.301 m/s.
Explanation:
Given that,
Mass of the cart, 
Initial speed of the cart, 
Mass of the larger cart, 
Initial speed of the larger cart, 
After the collision,
Final speed of the smaller cart,
(as its recolis)
To find,
The speed of the large cart after collision.
Solution,
Let
is the speed of the large cart after collision. It can be calculated using conservation of momentum as :





So, the speed of the large cart after collision is 0.301 m/s.