As the skateboard rolls down the ramp it loses potential energy and gains kinetic energy.
There will be four unpaired electrons
The metal complex is [FeX₆]³⁻
X being the halogen ligand
X = F, CL, Br, and I
The oxidation of metal state is +3
The ground state configuration is
₂₆Fe =Is² 2s²2p⁶ 3s² 3p⁶ 3d⁶ 4s²
Metal, Fe(III) ion electron configures
₂₆Fe³⁺ = Is2 2s² 2p⁶ 3s² 3p⁶ 3d⁵
Answer:
The light rays falling on a rough surface does follow the laws of reflection. The light rays are incident parallel on the rough surface but due to uneven surface the light rays are not reflected parallel rather they are reflected in different direction. Hence, no image is formed.
Answer:
The gauge pressure is 
Explanation:
From the question we are told that
The height of the water contained is 
The height of liquid in the cylinder is 
At the bottom of the cylinder the gauge pressure is mathematically represented as

Where
is the pressure of water which is mathematically represented as

Now
is the density of water with a constant values of 
substituting values


While
is the pressure of oil which is mathematically represented as

Where
is the density of oil with a constant value

substituting values


Therefore


Answer:
On the standing waves on a string, the first antinode is one-fourth of a wavelength away from the end. This means

This means that the relation between the wavelength and the length of the string is

By definition, this standing wave is at the third harmonic, n = 3.
Furthermore, the standing wave equation is as follows:

The bead is placed on x = 0.138 m. The maximum velocity is where the derivative of the velocity function equals to zero.


For this equation to be equal to zero, sin(59.94t) = 0. So,

This is the time when the velocity is maximum. So, the maximum velocity can be found by plugging this time into the velocity function:
