Answer:

Explanation: The equations used are as follows:

By using equation (2), the time needed for the car to come to rest is calculated as follows:

By using equation (1), The total distance traveled in that time would be as:

The revolutions taken by the tire before the car comes to rest would be:
Picking up a sheet of paper . . . work done with small force
Picking up a glass of water . . . work done with moderate force
Picking up a huge boulder . . . work done with a great tremendous force
=================================
Standing still . . .
Holding your tongue out as far as it will go . . .
Holding your arm over your head for 3 days . . .
Holding a huge boulder motionless over your head . . .
Pushing on a brick wall . . .
Pushing as hard as you can against a truck with the wheels locked . . .
. . . . . No work done at all, because the force doesn't move through a distance.
<u>Work done = (force) times (distance)</u>
If the force doesn't move, then the distance is zero, and the work done is zero.