The correct answer is
<span>C) either the pressure of the gas, the volume of the gas, or both, will increase.
In fact, the ideal gas law can be written as
</span>

<span>where
p is the gas pressure
V is its volume
n is the number of moles
R is the gas constant
T is the absolute temperature of the gas
We can see that if the temperature T increases, then the term on the right in the equation increases, therefore the term on the left should increase as well. In order for this to be possible, at least one between p and V should increase, or also both of them. Therefore, the correct answer is C.</span>
By the law of momentum conservation:-
=>m¹u¹ + m²u² = m1v1 + m²v² {let East is +ve}
=>u¹ + u² = v¹ + v² {as m1=m2}
=>3.5 - 2.75 = v1-1.5
<span>
=>v¹ = 2.25 m/s (East) </span>
Apparent magnitude depends mainly on the brightness of the object as seen from an observer on Earth. This is taken into account without the effects of the atmosphere.
P = m*v
7.5 = m*15
m = 7.5/15 = 0.5 kg
Answer:
6.21 m/s
Explanation:
Using work energy equation then

where d is displacement from initial to final position, v is velocity and subscripts a and b are position A and B respectively, m is mass of collar, g is acceleration due to gravity
Substituting 1 Kg for m, 0.4m for h,
as 0, 9.81 for g then
