Janice is the one who learned something by watching what was going on in the world around her.
Answer:
The potential difference between the plates increases
Explanation:
As we know that the capacitance of the capacitor is given by:
(1)
where
q = charge
C = capacitance
V = Voltage or Potential Difference
Also, the capacitance of a parallel plate capacitor is given as:
(2)
where

A = Area of the plates
D = Separation distance between the plates
Now, from eqn (1) and (2):

Now, from the above eqn we can say that:
Potential difference depends directly on the separation distance between the plates of the capacitor and is inversely dependent on the area of the plates of the capacitor.
Therefore, after disconnecting, if the separation between the plates is increased the potential difference across it also increases.
Answer:
do not worry bro you will know how to use it
Answer:
d = 6.43 cm
Explanation:
Given:
- Speed resistance coefficient in silicon n = 3.50
- Memory takes processing time t_p = 0.50 ns
- Information is to be obtained within T = 2.0 ns
Find:
- What is the maximum distance the memory unit can be from the central processing unit?
Solution:
- The amount of time taken for information pulse to travel to memory unit:
t_m = T - t_p
t_m = 2.0 - 0.5 = 1.5 ns
- We will use a basic relationship for distance traveled with respect to speed of light and time:
d = V*t_m
- Where speed of light in silicon medium is given by:
V = c / n
- Hence, d = c*t_m / n
-Evaluate: d = 3*10^8*1.5*10^-9 / 3.50
d = 0.129 m 12.9 cm
- The above is the distance for pulse going to and fro the memory and central unit. So the distance between the two is actually d / 2 = 6.43 cm