Answer:
The value is 
Explanation:
From the question we are told that
The current is 
The inductor is 
The voltage induced is 
Generally the emf induced is mathematically represented as

Here
is the time taken
=> 
=> 
=> 
Answer:
The neutron core is completely destroyed
Explanation:
A earth - supernova is an explosion resulting to the death of a star that occurs close enough to the earth but this does not completely destroy a star. Supernovae are the most violent explosions in the universe. But they do not explode like a bomb explodes, blowing away every bit of the original bomb. Rather, when a star explodes into a supernova, its core survives. The reason for this is that the explosion is caused by a gravitational rebound effect and not by a chemical reaction. Stars are so large that the gravitational forces holding them together are strong enough to keep the nuclear reactions from blowing them apart. It is the gravitational rebound that blows apart a star in a supernova.
The Milky Way is a spiral galaxy type so it has arms sort of like an octopus. We live in the Milky Way
Answer:
Explanation:
v = u +at
u = 0
a = 2.3 m /s²
t = 20 s
v = 2.3 x 20
= 46 m /s
Distance covered under acceleration of 2.3 m/s²
s = ut + 1/2 at²
= 0 + .5 x 2.3 x 20²
= 460 m
After that it moves under free fall ie g acts on it downwards .
v² = u² - 2gh , h is height moved by it under free fall
0 = 46² - 2 x 9.8 h
h = 107.96 m
Total height attained
= 460 + 107.96
= 567.96 m
b ) At its highest point ,it stops so its velocity = 0
c ) rocket's acceleration at its highest point = g = 9.8 downwards .
At highest point , it is undergoing free fall so its acceleration = g
Answer:
21.21 m/s
Explanation:
Let KE₁ represent the initial kinetic energy.
Let v₁ represent the initial velocity.
Let KE₂ represent the final kinetic energy.
Let v₂ represent the final velocity.
Next, the data obtained from the question:
Initial velocity (v₁) = 15 m/s
Initial kinetic Energy (KE₁) = E
Final final energy (KE₂) = double the initial kinetic energy = 2E
Final velocity (v₂) =?
Thus, the velocity (v₂) with which the car we travel in order to double it's kinetic energy can be obtained as follow:
KE = ½mv²
NOTE: Mass (m) = constant (since we are considering the same car)
KE₁/v₁² = KE₂/v₂²
E /15² = 2E/v₂²
E/225 = 2E/v₂²
Cross multiply
E × v₂² = 225 × 2E
E × v₂² = 450E
Divide both side by E
v₂² = 450E /E
v₂² = 450
Take the square root of both side.
v₂ = √450
v₂ = 21.21 m/s
Therefore, the car will travel at 21.21 m/s in order to double it's kinetic energy.