Typically occurs when we associate things to other things that look alike. We see that in many experiments, specifically “Little Albert” who was conditioned to be afraid of rats but later was afraid of anything that resembled that of a rat.
Hope this helps!
I don't really know what it's about but everything looks okay to me. There might be some mistakes on the last sentence but i'm not completely sure.
Answer:
The magnitude of the large object's momentum change is 3 kilogram-meters per second.
Explanation:
Under the assumption that no external forces are exerted on both the small object and the big object, whose situation is described by the Principle of Momentum Conservation:
(1)
Where:
,
- Initial and final momemtums of the small object, measured in kilogram-meters per second.
,
- Initial and final momentums of the big object, measured in kilogram-meters per second.
If we know that
,
and
, then the final momentum of the big object is:


The magnitude of the large object's momentum change is:


The magnitude of the large object's momentum change is 3 kilogram-meters per second.
Answer:
Speed of wind = 50mi/hr, Speed of plane in still air = 400mi/hr
Explanation:
Let the speed of the wind = Vw,
Speed of the plane in still air = Vsa,
The first trip the average speed of the plane = 1575mi/4.5hours = 350mi/hr
The coming trip the wind behind = 1575mi/3.5hrs = 450
Write the motion in equation form
First trip ( the plane flew into the wind)
Vaverage = Vsa - Vw
350 = Vsa - Vw
Second trip the wind was behind
450 = Vsa +Vw
Adding the two equation
800 = 2Vas
Vas = 800/2 = 400mi/hr
Substitute for Vas into equation 1
350mi/hr = 400mi/hr - Vw
Vw = 400-350 = 50mi/hr
Answer:
40 MJ (D)
Explanation:
Quantity of heat (Qh) = 100 MJ
temperature of steam (Th) = 450°c = 450 + 273 = 723 K
emperature of water (TI) = 20 °c = 20 + 273 = 293 k
efficiency = (Qh-Qi)/Qh = (Th-Ti)/Th

- Qi= 0.5947 x 
- (0.5947 x
) = Qi
Qi = 40.5 MJ equivalent to 40 MJ (D)