Answer:
direct current hope this helped : )
Hi there!
We must begin by converting km/h to m/s using dimensional analysis:

Now, we can use the kinematic equation below to find the required acceleration:
vf² = vi² + 2ad
We can assume the object starts from rest, so:
vf² = 2ad
(17.22)²/(2 · 75) = a
a = 1.978 m/s²
Now, we can begin looking at forces.
For an object moving down a ramp experiencing friction and an applied force, we have the forces:
Fκ = μMgcosθ = Force due to kinetic friction
Mgsinθ = Force due to gravity
A = Applied Force
We can write out the summation. Let down the incline be positive.
ΣF = A + Mgsinθ - μMgcosθ
Or:
ma = A + Mgsinθ - μMgcosθ
We can plug in the given values:
22(1.978) = A + 22(9.8sin(5)) - 0.10(22 · 9.8cos(5))
A = 46.203 N
Festival dances can help improve your fitness because your moving and exercising your body without even knowing for hours therefore it helps with weight loss and your health in general.
Answer:
An elastic collision is a collision in which there is no net loss in kinetic energy in the system as a result of the collision. Both momentum and kinetic energy are conserved quantities inelastic collisions.
Explanation:
Suppose two similar trolleys are traveling toward each other with equal speed. They collide, bouncing off each other with no loss in speed. This collision is perfectly elastic because no energy has been lost. In reality, examples of perfectly elastic collisions are not part of our everyday experience. Some collisions between atoms in gases are examples of perfectly elastic collisions. However, there are some examples of collisions in mechanics where the energy lost can be negligible. These collisions can be considered elastic, even though they are not perfectly elastic. Collisions of rigid billiard balls or the balls in Newton's cradle are two such examples.