In order to accelerate the dragster at a speed

, its engine must do a work equal to the increase in kinetic energy of the dragster. Since it starts from rest, the initial kinetic energy is zero, so the work done by the engine to accelerate the dragster to 100 m/s is

however, we must take into account also the fact that there is a frictional force doing work against the dragster, and the work done by the frictional force is:

and the sign is negative because the frictional force acts against the direction of motion of the dragster.
This means that the total work done by the dragster engine is equal to the work done to accelerate the dragster plus the energy lost because of the frictional force, which is

:

So, the power delivered by the engine is the total work divided by the time, t=7.30 s:

And since 1 horsepower is equal to 746 W, we can rewrite the power as
Answer:
Density = 1.1839 kg/m³
Mass = 227.3088 kg
Specific Gravity = 0.00118746 kg/m³
Explanation:
Room dimensions are 4 m, 6 m & 8 m. Thus, volume = 4 × 6 × 8 = 192 m³
Now, from tables, density of air at 25°C is 1.1839 kg/m³
Now formula for density is;
ρ = mass(m)/volume(v)
Plugging in the relevant values to give;
1.1839 = m/192
m = 227.3088 kg
Formula for specific gravity of air is;
S.G_air = density of air/density of water
From tables, density of water at 25°C is 997 kg/m³
S.G_air = 1.1839/997 = 0.00118746 kg/m³
Answer:
Thrust developed = 212.3373 kN
Explanation:
Assuming the ship is stationary
<u>Determine the Thrust developed</u>
power supplied to the propeller ( Punit ) = 1900 KW
Duct distance ( diameter ; D ) = 2.6 m
first step : <em>calculate the area of the duct </em>
A = π/4 * D^2
= π/4 * ( 2.6)^2 = 5.3092 m^2
<em>next : calculate the velocity of propeller</em>
Punit = (A*v*β ) / 2 * V^2 ( assuming β = 999 kg/m^3 ) also given V1 = 0
∴V^3 = Punit * 2 / A*β
= ( 1900 * 10^3 * 2 ) / ( 5.3092 * 999 )
hence V2 = 8.9480 m/s
<em>Finally determine the thrust developed </em>
F = Punit / V2
= (1900 * 10^3) / ( 8.9480)
= 212.3373 kN
Answer:
sorry kilqngqn kolqng ng point
Explanation:
sorry tlaga please pa heart nlang please
Answer:
W = 47040 J
Explanation:
Given that,
The mass of a student, m = 60 kg
Height of the tower, h = 80 m
We need to find the work done in climbing the tower. The work done is given by :
W = mgh
So,
W = 60 × 9.8 × 80
W = 47040 J
So, the required work done is 47040 J.