ananı var ya ananı
kodumun abd lisi aptal cajhil özürlü
Complete Question
A spherical wave with a wavelength of 2.0 mm is emitted from the origin. At one instant of time, the phase at r_1 = 4.0 mm is π rad. At that instant, what is the phase at r_2 = 3.5 mm ? Express your answer to two significant figures and include the appropriate units.
Answer:
The phase at the second point is 
Explanation:
From the question we are told that
The wavelength of the spherical wave is 
The first radius is 
The phase at that instant is 
The second radius is 
Generally the phase difference is mathematically represented as

this can also be expressed as

So we have that

substituting values



Answer:
Kinetic energy cannot be negative
potential energy is a reference dependent quantity and it can be positive as well as negative both
Since potential energy is defined only for conservative force so it can not be found for friction force
Explanation:
Kinetic energy of an object is given by the formula

here we know that
m = mass of object that can not be negative
v = speed of the object and since its square is given here so it can not be negative
so Kinetic energy is always positive
potential energy is given as the energy due to the virtue of the position of object
so it is

so potential energy is a reference dependent quantity and it can be positive as well as negative both
Since potential energy is defined only for conservative force so it can not be found for friction force
Answer:
It can have many set of perpendicular component but the most important one is 3 AND 4
Explanation:
<em><u>PLEASE</u></em><em><u> </u></em><em><u>MARK ME</u></em><em><u> </u></em><em><u>BRAINLIEST IF</u></em><em><u> </u></em><em><u>MY ANSWER</u></em><em><u> </u></em><em><u>IS CORRECT</u></em><em><u> </u></em><em><u>PLEASE</u></em><em><u> </u></em>
Answer:
= 4.3 × 10 ⁻¹⁴ m
Explanation:
The alpha particle will be deflected when its kinetic energy is equal to the potential energy
Charge of the alpha particle q₁= 2 × 1.6 × 10⁻¹⁹ C = 3.2 × 10⁻¹⁹ C
Charge of the gold nucleus q₂= 79 × 1.6 × 10⁻¹⁹ = 1.264 × 10⁻¹⁷C
Kinetic energy of the alpha particle = 5.28 × 10⁶ × 1.602 × 10⁻¹⁹ J ( 1 eV)
= 8.459 × 10⁻¹³
k electrostatic force constant = 9 × 10⁹ N.m²/c²
Kinetic energy = potential energy = k q₁q₂ / r where r is the closest distance the alpha particle got to the gold nucleus
r = ( 9 × 10⁹ N.m²/c² × 3.2 × 10⁻¹⁹ C × 1.264 × 10⁻¹⁷C) / 8.459 × 10⁻¹³
= 4.3 × 10 ⁻¹⁴ m