Hydrogen (H) has a molar mass of about 1.007 g/mol and has 1 electron.
Oxygen (O) has a molar mass of about 15.999 g/mol and has 8 electrons.
Then water (H₂O) has a total molar mass of about 18.015 g/mol and has 10 electrons.
30 g of water is the mass of
(30 g) × (1/18.015 mol/g) ≈ 1.66528 mol
of water. Recall that 1 mole is around 6.022 × 10²³ molecules (i.e. Avogadro's number). So 30 g of water is the mass of approximately 1.00285 × 10²⁴ molecules of water.
If each molecule contains 10 electrons, then 30 g of water contains 1.00285 × 10²⁵ ≈ 10²⁵ electrons.
Answer:
The momentum of the bowling ball is 53.4 kg-m/s.
Explanation:
We have,
Mass of a bowling ball is 8.9 kg
Speed of the ball is 6 m/s
It is required to find the momentum of the ball. The momentum of an object is given in terms of its mass and speed as :
p = mv

So, the momentum of the bowling ball is 53.4 kg-m/s.
Answer:
500÷25=20
so 20 coulombs per second
please mark me as brainlist
We want a sound wave with a wavelength of 0.52 meters or a natural fraction thereof. We'll work in MKS.
w = 0.52/n
That's length. We have speed 344 meters/second so w corresponds to a frequency of
f = 344 / w = n (344/.52)
f = 661.5 n Hertz
I don't really agree with how they're saying it, but all the fundamental talk is probably trying to tell us n=1,
Answer: 661.5 Hertz
Any multiple of that will also produce constructive interference; we can go to about n=30 before we're out of the audio range.